Новости нильс бор открытия

Бор Нильс (1885–1962), датский физик, создатель первой квантовой теории атома, президент Датской королевской АН (с 1939). создатель квантовой физики, которую многие предлагали назвать теорией дополнительности. Нильс Хенрик Давид Бор родился в датской столице поздней осенью 1885-го. 26 января 1939 года на конференции по теоретической физике в Вашингтоне Нильс Бор сообщил об открытии деления урана. Очень развернуто о жизни и открытиях Нильса Бора рассказывается в книге Д. Данина «Нильс Бор» из серии «Жизнь замечательных людей».

Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре

Три следующих года Бор провёл, исследуя свою теорию на практике. Результаты опубликовали с рецензиями от популярных тогда учёных: сэра Джона Уильяма Стретта и сэра Уильяма Рамзея, — оба получили «Нобеля» в 1904 году. В 1910 Бор стал магистром, в следующем году блистательно защитил докторскую по статистической механике. В ней он вывел свою теорию — о магнитном моменте электрических зарядов в движении и стационарном состоянии. Через девять лет эту же теорему заново открыла Йоханна ван Лёвен, поэтому в наше время она носит имя обоих учёных. Бор и Резерфорд Осенью 1911 Бор приезжает в Кембридж. Ему дали стипендию на 2 500 крон для стажировки за рубежом. Поэтому он выбирает Англию для своих исследований, конкретно — Кавендишскую лабораторию, в которой главным был Нобелевский лауреат по физике сэр Джон Томсон. Но сотрудничество не сложилось. Томсону не понравился Бор, который открыто указывал на просчёты и ошибки маститого физика, к тому же датчанин плохо говорил по-английски. Поэтому, несмотря не гениальность выбранного им наставника, Бору пришлось искать другой университет.

И спустя полгода он переезжает в Манчестер, к «отцу» ядерной физики Эрнесту Резерфорду, тоже Нобелевскому лауреату. Вместе они работали над моделями атома и их изменениями в ходе радиоактивного распада. В лице Резерфорда Бор нашёл не только наставника и коллегу, но и очень близкого друга. Когда в 1912 учёный женился, то часть свадебного путешествия они с женой провели в Манчестере, навестив Резерфорда. В 1913 выходит статья Бора о «Теории торможения заряженных частиц при их прохождении через вещество». После возвращения в Копенгаген, Бор преподаёт в университете, а также активно работает над квантовой теорией строения атома. Весной 1913 он ещё раз едет в Манчестер — на консультацию с Резерфордом. После выходит его статья «О строении атомов и молекул» в журнале Philosophical Magazine. Её публикуют по частях, растягивают теоретическую часть от июля до декабря.

Со временем сотрудничество между двумя учеными росло, а их дружба росла. Одно из событий, в котором оба ученых взаимодействовали в экспериментальной области, было связано с моделью атома, предложенной Резерфордом. Эта модель была верной в концептуальной области, но невозможно было представить ее, обрамляя ее законами классической физики. Учитывая это, Бор осмелился сказать, что причина этого в том, что динамика атомов не подчиняется законам классической физики. Северный институт теоретической физики Нильс Бор считался застенчивым и замкнутым человеком, однако серия эссе, опубликованных в 1913 году, принесла ему широкое признание в научной сфере, что сделало его признанным общественным деятелем. Эти очерки были связаны с его концепцией строения атома. В 1916 году Бор отправился в Копенгаген и там, в своем родном городе, он начал преподавать теоретическую физику в Копенгагенском университете, где и учился. Находясь в этом положении и благодаря ранее приобретенной славе, Бор получил достаточно денег, необходимых для создания в 1920 году Северного института теоретической физики. Датский физик руководил этим институтом с 1921 по 1962 год, когда он умер. Позже институт изменил название и стал называться Институтом Нильса Бора в честь своего основателя. Очень скоро этот институт стал эталоном самых важных открытий, сделанных в то время, связанных с атомом и его конформацией. За короткое время Северный институт теоретической физики стал наравне с другими университетами с более высокими традициями в этой области, такими как немецкие университеты Геттингена и Мюнхена. Копенгагенская школа 1920-е годы были очень важны для Нильса Бора, поскольку за эти годы он опубликовал два основных принципа своих теорий: принцип соответствия, опубликованный в 1923 году, и принцип дополнительности, добавленный в 1928 году. Вышеупомянутые принципы стали основой, на которой начала формироваться Копенгагенская школа квантовой механики, также называемая Копенгагенской интерпретацией. Эта школа нашла противников в лице великих ученых, таких как сам Альберт Эйнштейн, который, выступив против различных подходов, в конечном итоге признал Нильса Бора одним из лучших научных исследователей того времени. С другой стороны, в 1922 году он получил Нобелевскую премию по физике за свои эксперименты, связанные с атомной реструктуризацией, и в том же году родился его единственный сын Оге Нильс Бор, который в конце концов учился в институте, которым руководил Нильс. Позже он стал ее директором и, кроме того, в 1975 году получил Нобелевскую премию по физике. Именно в этом контексте Бор определил делящуюся характеристику плутония. В конце того десятилетия, в 1939 году, Бор вернулся в Копенгаген и получил назначение президента Королевской датской академии наук. Вторая мировая война В 1940 году Нильс Бор был в Копенгагене, а в результате Второй мировой войны три года спустя он был вынужден бежать в Швецию вместе со своей семьей, потому что Бор имел еврейское происхождение. Из Швеции Бор отправился в Соединенные Штаты. Там он поселился и присоединился к команде разработчиков Манхэттенского проекта, который произвел первую атомную бомбу. Этот проект осуществлялся в лаборатории, расположенной в Лос-Аламосе, Нью-Мексико, и во время своего участия в этом проекте Бор сменил имя на Николаса Бейкера. Возвращение домой и смерть В конце Второй мировой войны Бор вернулся в Копенгаген, где он снова стал директором Северного института теоретической физики и всегда выступал за применение атомной энергии с полезными целями, всегда добиваясь эффективности в различных процессах.

Это представляет собой больше лестницу, чем склон: электроны могут находиться только на ступенях и никогда в их промежутках. Позже формулировки этой парадигмы Бор получил спектр атома водорода. Здесь каждой линии частоты испускаемого света соответствовал переход электрона с одной орбиты на другую, меньшую. Фактически Бор открыл закон квантования энергии. Автограф Нильса Бора. Он ввел в структуру атома постоянную Планка и сформулировал принцип соответствия. Мы не будем описывать и формулировать этот принцип, но заметим, что он связал классическую физику с новыми квантовыми явлениями. Но уже в середине 1920-х годов эта связь была прервана. Произошел драматический поворот, который изменил сами представления о том, что такое физика. По стопам Бора уже шли молодые физики. Это выразилось в создании под руководством Н. Бора Копенгагенской школы физики.

Сам же он уже в 28 лет создал первую квантовую теорию атома, а в 37 лет стал лауреатом Нобелевской премии по физике. Но больше формул и расчетов он ценил человеческую жизнь. Спасал немецких ученых от нацистов, уговаривал лидеров всех стран отказаться от использования ядерного оружия. Нильс Бор — один из основателей современной физики, член 20 академий наук мира, создатель первой теории атома, лауреат Нобелевской премии Впервые он вошел в аудиторию университета со слегка опущенной головой и школьной сумкой в руке. Ничто не выдавало в нем сына всемирно известного ученого и внука крупнейшего банкира. Скорее, наоборот: школьный ранец подчеркивал его полное равнодушие к материальным проявлениям жизни. Его университетская приятельница Хельга Лунд через десятилетия будет вспоминать, как с любопытством следила за этим скромным пареньком, присевшим рядом с ней на край скамьи. Ей подумалось тогда, что этому юноше трудно будет даваться математика. Ведь ей, поступившей в университет после трех лет преподавания в провинции, досконально было известно, «как должны выглядеть таланты и тупицы». Но очень скоро она поняла, что ее «наблюдательность» дала промах, а нестандартность юноши определялась простым словом, которое она сформулировала уже на втором курсе в письме к кузену: «Кстати, о гении. Занятно быть знакомой с гением. Это Нильс Бор. В нем всё больше проявляется что-то необычное. Это самый лучший человек и самый скромный, какого ты можешь себе вообразить…» Нильс Хенрик Давид Бор — скромный гений. Эти слова будут потом произносить еще многие. И дело не только в его открытиях. Они — отдельный предмет восхищения коллег-физиков всего мира. Ведь Нильс Бор — один из основателей современной физики, член 20 академий наук мира, создатель первой теории атома, лауреат Нобелевской премии. Однако за всеми расчетами, формулами, теориями и открытиями не менее отчетливо всегда был виден интереснейший жизненный путь человека, неравнодушного к судьбам окружавших его людей, к их проблемам — личностным и глобальным. Нильс Бор родился 7 октября 1885 года в семье профессора физиологии Копенгагенского университета Христиана Бора, который и передал сыну наследственное уважение к умственному труду и точным знаниям. Наследственное, так как его прадед руководил частной школой на острове Борнхольм, а дед возглавлял школу в гамлетовском Эльсиноре.

Исторические хроники. Великие умы мира. Нильс Бор

Лауреат Нобелевской премии по физике 1922. Член Датского королевского общества 1917 и его президент с 1939 года. Был членом более чем 20 академий наук мира, в том числе иностранным почётным членом Академии наук СССР 1929; членом-корреспондентом — с 1924. Бор известен как создатель первой квантовой теории атома и активный участник разработки основ квантовой механики. Он также внёс значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой.

Бор родился в Копенгагене, в семье известного профессора-физиолога и быстро проявил многообещающую способность к наукам. Его диссертация на степень магистра, которую он защитил в Копенгагенском университете, посвященная изучению поверхностного натяжения жидкостей, до сих пор считается эталоном в гидродинамике.

Появляются рокфеллеровские стипендиаты. И он начинает свою деятельность по созданию мирового центра? Если бы не война, то главный центр квантовой физики возник бы, конечно, в Германии. И даже понятно где: в Мюнхене, у Зоммерфельда, в его развивающейся школе. Он подготовил десятки самых сильных теоретиков, в том числе Паули и Гейзенберга. Но после войны Германия оказалась в международной изоляции, а Бор стал принимать у себя молодых немецких докторов, в том числе самых блестящих из Мюнхена, с зоммерфельдовской подготовкой, а потом еще и из Геттингена. По абсолютным меркам их было в целом не так много.

За десять лет, с 1916 по 1927 год, всего в институте Бора работало примерно шестьдесят приезжих ученых из разных стран. Копенгагенская конференция, весна 1930, обсуждает второй кризис квантовой теории. Игрушечная пушка и горн использовались для звукового сопровождения докладов об очередных трудностях теории. Директора тогда имели большую власть, из-за чего могли возникать трения. Я уже упомянул, что журналы публиковали быстро, потому что не было реферирования. Достаточно было, чтобы профессор написал сопроводительное письмо, что статью стоит напечатать. Профессор брал ответственность и осуществлял контроль за научным качеством всех работ, выполненных в руководимом им институте. Постдоки, работавшие в институте Бора, должны были получить от него разрешение послать свою статью в журнал. Что не всегда было легко.

Бор часто читал медленно, сомневался или критиковал, задерживал нетерпеливых гениев. Или советовал сделать какие-то исправления. У Гейзенберга, например, а позже у Ландау, с этим возникли проблемы. В тот год Гейзенберг работал как бы в двух местах: в Геттингене он должен был читать лекции как приват-доцент, а в Копенгагене у него была рокфеллеровская стипендия. И он провел часть года там и там, переезжая с места на место. А написал он свою новую работу, что тоже символично и важно, не в каком-то из этих институтов, а уехав на остров Гельголанд в Северном море спасаясь от приступа сенной лихорадки, то есть, по сути, экстерриториально. Он не был уверен, насколько важна его идея. У него самого на этот счет еще были сомнения. Но он понимал, что она не очень соответствовала ни тому, чем занимался Макс Борн, его профессор в Геттингене, ни той стратегии, которую предпочитал Бор в Копенгагене.

Если бы он работал только у одного профессора, то, скорее всего, в своих работах следовал бы авторитету руководителя. Но ситуация двойного подчинения дала ему возможность большего выбора. И тем не менее ему нужно было решить, через какого из двух профессоров послать статью в печать. Вернувшись с острова, он оставил рукопись Борну, посмотреть, а сам уехал из Геттингена делать доклад о своих предыдущих работах. Борн поразмыслил над текстом, увидел возможность интересной новой идеи для своей собственной статьи, и послал текст Гейзенберга в журнал для публикации. Постдоки приехали, поработали и уехали. Это же не научная школа в том смысле, как мы ее понимаем. Она обычно возникает из докторантов. У Зоммерфельда именно в этом немецком смысле была школа, потому что к нему студенты приходили, чтобы получить математическую подготовку, написать докторскую диссертацию и получить путевку в профессиональную теоретическую физику.

Стандартный размер рокфеллеровской стипендии был сто долларов в месяц или немного больше. Тогда это были очень приличные деньги, примерно соответствовавшие зарплате экстраординарного профессора в Германии — У Бора не было такой школы, получается? Метафорически тоже часто говорится, что у Бора была школа. Но в реальности, он очень редко руководил диссертациями: между двумя войнами, то есть с 1917 года по 1940-й, в Копенгагенском университете были защищены только четыре докторские диссертации по физике. Из которых три были экспериментальные и только одна теоретическая. И это понятно, потому что массовое производство диссертаций и докторов философии существовало в Германии, где было примерно тридцать немецкоязычных университетов плюс еще инженерные вузы и, соответственно, достаточно массовый рынок профессорских мест. Дании не были нужны свои собственные доктора физики в таком количестве, поэтому институт Бора расширялся не национально, а интернационально, за счет ученых, которые защищали свои диссертации в других странах и приезжали в Копенгаген только на время. В результате создалась не школа в стандартном смысле, а международное сообщество, где все друг друга знали, и информационный центр. Раз или два в году в Копенгагене проходила конференция, на которую съезжались несколько десятков бывших или будущих постдоков для обсуждения текущих проблем в квантовой теории.

Конечно, можно сказать, что он председательствовал над всем этим процессом и контролировал результат. Через него должны были проходить все работы, которые делались в его институте, перед отправлением в печать. Но самому ему к середине 1920-х годов уже было тяжело поспевать за математическими деталями квантовой теории. Когда кто-то из студентов заканчивал статью, Бор сначала давал ее своему ближайшему ассистенту, Крамерсу или Гейзенбергу, проверить, нет ли проблем с технической точки зрения, а сам потом уже более внимательно редактировал нюансы постановки вопроса и интерпретации. Можно сказать, что он не столько задавал направление исследований по квантовой механике, сколько придавал им окончательную форму и выводы. В 1922 году за работу в области структуры атома и радиации Нильс Бор удостаивается Нобелевской премии по физике. Он ввел в структуру атома постоянную Планка и сформулировал принцип соответствия Wikipedia — И сам в этот период прорывных, опережающих работ он уже не делал? Бор вообще работал медленно. Ему всегда хотелось какой-то термин или предложение в выводах по многу раз поменять или уточнить.

Он хотел добиться настолько точных и полных формулировок, что результат часто оказывался противоположным и очень труднопонимаемым. И этот процесс редактирования отнимал у него очень много времени. Только к концу 1927 года, когда квантовая механика в основном уже была завершена, он опубликовал фундаментальную работу по ее истолкованию — то, что теперь называется «копенгагенской интерпретацией». То есть возвел философскую крышу над уже построенным зданием. Бор, по сути, создал то организационное и социальное пространство, в котором уже постдоками создавалась квантовая механика.

Контент доступен только автору оплаченного проекта Биография Нильса Бора Информация о жизни и научной деятельности Нильса Бора, его роли в развитии физики, участии в Манхэттенском проекте и достижениях, принесших ему Нобелевскую премию. Контент доступен только автору оплаченного проекта Вклад Нильса Бора в развитие квантовой механики Исследование роли Нильса Бора в создании квантовой механики, его теоретические работы и вклад в основные принципы квантовой физики. Контент доступен только автору оплаченного проекта Участие Нильса Бора в Манхэттенском проекте Анализ участия Нильса Бора в Манхэттенском проекте, его вклад в разработку атомной бомбы и влияние на развитие ядерной физики. Контент доступен только автору оплаченного проекта Нобелевская премия Нильса Бора Исследование причин присуждения Нобелевской премии Нильсу Бору, его вклада в физику, а также последствий этого признания для научного сообщества. Контент доступен только автору оплаченного проекта Научные достижения Нильса Бора Обзор основных научных достижений Нильса Бора, их влияния на развитие физики и научные открытия, которые сделали его выдающимся ученым. Контент доступен только автору оплаченного проекта Философские взгляды Нильса Бора Исследование философских убеждений и взглядов Нильса Бора на природу реальности, квантовую механику и фундаментальные принципы физики. Контент доступен только автору оплаченного проекта Влияние Нильса Бора на современную научную мысль Анализ влияния Нильса Бора на развитие современной научной мысли, его научные концепции и идеи, которые оказали влияние на последующие поколения ученых.

Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий, с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца калий, натрий, литий и т. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. В своем первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему все должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен. Это произошло, когда доктор Алан Айткен наводил порядок в кладовке химического факультета. Факультет переехал в новое помещение в 1968 году, и с тех пор оборудование, реактивы и бумаги пылились в подсобном помещении. Таблица лежала в кладовке среди кучи разных лабораторных принадлежностей. В какой-то момент Айткен обнаружил свернутые в трубку лекционные материалы по химии, а в них — копию Периодической таблицы химических элементов, возраст которой оценивался в 133—140 лет. Найденная таблица аннотирована на немецком языке, слева внизу идет надпись Verlag v. Другая надпись — Lith. Выяснить, в каком году была напечатана таблица, помогли поиски в университетском архиве. Нашлись данные о покупке таблицы профессором Томасом Пурди — пособие было куплено в октябре 1888 года. Тогда оно стоило 3 немецкие марки. Восстановление плаката заняло немало времени: поверхность пришлось очистить от грязи и мусора, отделить таблицу от подкладки, на которой та была закреплена, обработать специальными растворами для выравнивания кислотно-щелочного баланса и устранить разрывы с помощью специальной бумаги из бруссонетии бумажной и пасты из пшеничного крахмала. Теперь таблица находится в специальном хранилище университета, где для нее созданы подходящие условия. На самом же факультете осталась ее полномасштабная копия. Чуть позже, но в том же 2019 году, сотрудники Санкт-Петербургского университета сообщили о своей сенсационной находке — обнаруженная ими в Большой химической аудитории таблица оказалась на 12 лет старше.

Бор Нильс. Книги онлайн

В период войны Нильс Бор из-за еврейского происхождения был вынужден эмигрировать в США. Нильс Бор устроил революцию в физике и уже в 37 получил нобелевку. Бор уже в 1939 году понимал, что открытие ядерного деления позволяло создать атомную бомбу, однако полагал, что инженерные работы по отделению урана-235 потребуют колоссальных, а потому непрактичных промышленных затрат. Во время исследований Нильс Бор узнал, что уран-235 может расщепляться, высвобождая невиданную энергию. В этот день, 26 января 1939 года, известный датский физик Нильс Бор, выступая на конференции по теоретической физике в Вашингтоне, рассказал об открытии деления урана. В период войны Нильс Бор из-за еврейского происхождения был вынужден эмигрировать в США.

Нильс Бор Биография и материалы

Нильс Бор всемирно известен как один из самых важных учёных 20-го века за его инновационное открытие структуры атомов. С критикой этого парадокса выступил Нильс Бор, который привел свои аргументы в поддержку квантовой механики. Датский физик Нильс Бор смог описать современную модель атома благодарю сну о солнечной системе. 1 марта 1869 года русский ученый-энциклопедист Дмитрий Иванович Менделеев открыл периодический закон и составил систему химических элементов. В этот день, 26 января 1939 года, известный датский физик Нильс Бор, выступая на конференции по теоретической физике в Вашингтоне, рассказал об открытии деления урана.

Нильс Бор: деятельность физика – лауреата нобелевской премии

В 1922 году после присуждения Нобелевской премии, великому ученому Нильсу Бору, соотечественники-пивовары из компании Carlsberg, подарили дом неподалеку от своего завода. Нильс Бор всемирно известен как один из самых важных учёных 20-го века за его инновационное открытие структуры атомов. Нильс Бор начал с открытий, сделанных Резерфордом, и продолжал развивать их, пока не смог наложить на них свой отпечаток.

#Нильс Бор

Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям. В семье никто не сомневался, что в будущем он будет заниматься наукой. После окончания школы юноша поступил в Копенгагенский университет, где начал изучать физику, спустя семь лет защитил докторскую диссертацию, был приглашен на работу в Кембридж, а затем в Манчестер, где начал сотрудничать с Эрнестом Резерфордом, основателем ядерной физики. Именно здесь проводились исследования, которые впоследствии привели Бора к мировой славе, а Розерфорд, с которым они очень подружились, стал для него «вторым отцом». Спустя год Нильс Бор женился на Маргрете Норлунд, и этот брак оказался счастливым. На протяжении всей последующей жизни супруга была его самым близким другом и советчиком. У них родилось шестеро сыновей, один из которых Оге Бор пошел по стопам отца и стал известным физиком. Весной 1916 года Бор вернулся в Данию, где ему предложили престижную должность профессора в Копенгагенском университете, который теперь носит его имя. Нильс Бор с супругой В 1922 году за выдающиеся успехи в области исследования атома Нильсу Бору была присуждена Нобелевская премия, он стал уважаемым ученым и почетным гражданином Дании, и в последующие годы занимался ядерной физикой, внеся значительный вклад в изучение ядерных реакций. Несколько его немецких коллег-физиков еврейского происхождения потеряли работу, оставшись без каких-либо средств к существованию в своей стране. Бор использовал свои связи, чтобы вывезти их из Германии.

По его инициативе был создан комитет по оказанию помощи ученым, вынужденным бежать от нацистского режима. Когда весной 1940 года Дания была оккупирована немецкими войсками, ситуация еще больше обострилась, даже несмотря на то, что она оказалась в более выгодном положении, чем другие страны из-за лояльности Гитлера к датчанам, которых он считал представителями арийской расы. И даже преследование евреев в Дании не было таким жестоким, как в других оккупированных странах, во всяком случае, никого из евреев не заставляли носить «желтую звезду» и первое время не отправляли в лагеря. Но все чувствовали, что назревает что-то страшное. К лету 1942 года усилилось давление на датчан со стороны союзников, призывающих к активному сопротивлению немецким оккупационным войскам. Эти призывы обеспокоили нацистских лидеров, и они использовали их как предлог ужесточить контроль над Данией, и, прежде всего, это коснулось антиеврейских мер.

То есть к наипримитивнейшей реальности обыденной жизни. Наука как миф Среди гуманитариев довольно популярно, если не сказать модно, эпатажное утверждение А. Ну, о том, скучно или наоборот захватывающе интересно живется внутри этого мифа, могут судить только те, кто им зачарован.

А вот насчет эквивалентности науки всем прочим мифам… Я уж не стану говорить о такой очевидности, как ее уникальные практические достижения, но уже и своей предельной консервативностью, своим стремлением без крайней необходимости не обновлять арсенал используемых образов аналогий наука являет собой все-таки тоже уникальную систему грез. Если все прочие мифологические системы свободны использовать любые эффектные образы, ни в чем не стесняя своей фантазии, то наука требует придерживаться максимально медленного эволюционного пути: даже в тех случаях, когда без привлечения новых аналогий, новых моделей обойтись уже совершенно невозможно, новые конструкции, новые абстракции все равно должны быть максимально сходны с образцами предыдущих слоев. И в этом смысле Бор был еще более глубоким революционером, нежели Эйнштейн. Уже не имея никаких рациональных возражений, он отказывался принимать вероятностную картину мира уже по чисто психологическим мотивам не случайно Макс Борн, один из главных идейных доноров новой парадигмы, назвал детерминизм суеверием : если миром правит случай, ему, Эйнштейну, лучше уйти из физики в казино. Официально, правда, Эйнштейн выражался более сдержанно: детерминизм в микромире исчезает потому, что нам известны еще не все параметры, управляющие тамошними процессами, давайте не делать слишком поспешных обобщений. Но как же узнать, поспешны эти обобщения или не поспешны? С этой точки зрения и первый революционный прорыв двадцативосьмилетнего Бора три статьи, которые потрясли мир в «Philosophical Magazine» летом и осенью 1913 года вовсе не выглядит таким уж революционным. Напомним, что в 1911 году Резерфорд, этот Колумб атомной физики, пришел к выводу, что атомы которых никто не видел как тогда, так и сейчас представляют собой не сплошные шарики, а нечто вроде невообразимо микроскопических солнечных системочек, причем почти вся масса их сосредоточена в положительно заряженном ядре, вокруг которого вращаются отрицательно заряженные электроны. Что ж, скажет правоверный последователь Маха, раз такая модель лучше согласуется с опытными данными, можем пока принять и ее.

Подогнать количественные характеристики таких переходов было уже делом несложной техники. И, однако же, во всем мире никто, кроме Бора, до этого не додумался. И прибавил, что у него самого много лет назад возникали подобные мысли, но не хватило духа их разработать. А у Бора хватило. В этом и заключаются самые тяжкие обязательства, налагаемые наукой в отличие от мифотворчества: ученый должен быть как предельным нигилистом, не страшащимся самых революционных гипотез, так и предельным консерватором, стремящимся во что бы то ни стало сохранить арсенал накопленных моделей. И Бор умел как никто сочетать эти несочетаемые взаимно дополнительные качества. И что особенно приятно, они позволяли ему пребывать в полной гармонии с социальной средой. Нильс Бор и Альберт Эйнштейн. Гений места Правда, и среду эту надо было еще поискать.

Дания, представляющаяся из громокипящей России совершенно кукольной страной, когда-то тоже гремела, громила, овладевала, вершила, но с некоторых пор начала лишь терять, терять, покуда наконец в 1879 году не уступила Германии уже и Шлезвиг-Гольштейн кажется, на одну только Гренландию до последних лет никто не покушался и не принялась заниматься исключительно собственным благоустройством.

Он также внёс значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой. Бор родился в Копенгагене, в семье известного профессора-физиолога и быстро проявил многообещающую способность к наукам. Его диссертация на степень магистра, которую он защитил в Копенгагенском университете, посвященная изучению поверхностного натяжения жидкостей, до сих пор считается эталоном в гидродинамике. За эту работу он получил Золотую медаль Академии наук Дании и снискал себе репутацию восходящей звезды датской науки. После защиты докторской диссертации Бор в 1911 году отправился в Англию — как бы мы сказали сегодня, в порядке научного обмена — и приступил к работе в лаборатории Дж. Томсона J. Thomson , первооткрывателя электрона.

Такой квант имеет энергию, равную произведению частоты вращения на постоянную Планка, или разности между начальной и конечной энергией электрона. Таким образом, Бор объединил наработки Резерфорда и идею квантов, которая была предложена Максом Планком в 1900 году. Такое объединение противоречило всем положениям традиционной теории, и в то же самое время, не отвергало ее полностью. Электрон был рассмотрен как материальная точка, которая движется по классическим законам механики, но «разрешенными» являются лишь те орбиты, которые выполняют «условиям квантования». На таких орбитах, энергии электрона обратно пропорциональны квадратам номеров орбит. Вывод из «правила частот» Опираясь на «правило частот», Бор сделал вывод, что частоты излучения пропорциональны разности между обратными квадратами целых чисел. Ранее эта закономерность была установлена спектроскопистами, однако не находила теоретического объяснения. Теория Нильса Бора позволяла объяснить спектр не только водорода простейшего из атомов , но и гелия, в том числе ионизированного. Ученый проиллюстрировал влияние содвижения ядра и предугадал, как заполняются электронные оболочки, что позволило выявить физическую природу периодичности элементов системе Менделеева. За эти наработки, в 1922 году Бор был удостоен Нобелевской премии. Институт Бора По завершении работ у Резерфорда уже признанный физик Бор Нильс вернулся на родину, куда его пригласили в 1916 году профессором в копенгагенский университет. Через два года он стал членом Датского королевского общества в 1939 году ученый возглавил его. В 1920 году Бор основал Институт теоретической физики и стал его руководителем. Власти Копенгагена, в знак признания заслуг физика, предоставили ему для института здание исторического «Дома Пивовара». Институт оправдал все ожидания, сыграв в развитии квантовой физики выдающуюся роль. Стоит отметить, что определяющее значение в этом имели личные качества Бора. Он окружил себя талантливыми сотрудниками и учениками, границы между которыми часто были незаметны. Институт Бора был интернационален, в него стремились опасть отовсюду. Среди знаменитых выходцев Боровской школы можно выделить: Ф. Блоха, В. Вайскопфа, Х. Казимира, О. Бора, Л. Ландау, Дж. Уиллера и многих других. К Бору не единожды приезжал немецкий ученый Верне Гейзенберг. Во времена, когда создавался «принцип неопределенности», с Бором дискутировал Эрвин Шредингер, который был сторонником чисто-волновой точки зрения. В бывшем «Доме Пивовара» формировался фундамент качественно новой физики двадцатого века, одним из ключевых фигурантов которой был Нильс Бор. Модель атома, предложенная датским ученым и его наставником Резерфордом, была непоследовательной. Она объединяла постулаты классической теории и гипотезы, явно ей противоречащие. Дабы устранить эти противоречия, необходимо было радикально пересмотреть основные положения теории.

7 интересных фактов из биографии Нильса Бора

И знаете, да — что если нет под рукой карандаша с блокнотом, то наутро все непременно забудешь? Вот и мне приснился такой сон, когда мне было 23 года. Вдруг проснувшись, я задумался: а что, если бы мы могли скачать весь интернет, сохранить все ссылки и… Я схватил ручку и начал писать! Иногда важно проснуться и перестать мечтать. Искусство изготовления таких мечей считалось утерянным, потому что во время «культурной революции» коммунисты сжигали книги о традиционной культуре.

Часть знаний, как изготавливать такие мечи, Чэнь получил во время исследований, но многие секреты пришли к нему в снах. Он увидел божественных существ, которые дали ему инструкции. Он неохотно рассказывает подробности, потому что, по его словам, люди всё равно не поверят ему. Перед шлифовкой он час сидит в медитации.

Для изготовления меча такого рода необходим душевный и духовный настрой, считает Чэнь. Инсулин После смерти близкого друга, умершего из-за диабета в 1920 году канадский учёный Фредерик Грант Бантинг решил посвятить свою жизнь созданию лекарства от этой страшной болезни. Он начал с изучения литературы, посвященной этой проблеме. Статья Мозеса Баррона «О блокаде панкреатического протока желчными камнями» произвела на молодого ученого очень большое впечатление, вследствие которого он увидел знаменитое сновидение.

Контент доступен только автору оплаченного проекта Научные достижения Нильса Бора Обзор основных научных достижений Нильса Бора, их влияния на развитие физики и научные открытия, которые сделали его выдающимся ученым. Контент доступен только автору оплаченного проекта Философские взгляды Нильса Бора Исследование философских убеждений и взглядов Нильса Бора на природу реальности, квантовую механику и фундаментальные принципы физики. Контент доступен только автору оплаченного проекта Влияние Нильса Бора на современную научную мысль Анализ влияния Нильса Бора на развитие современной научной мысли, его научные концепции и идеи, которые оказали влияние на последующие поколения ученых.

Контент доступен только автору оплаченного проекта Критика и контроверсии вокруг научных идей Нильса Бора Обзор критики и споров, связанных с научными идеями Нильса Бора, а также контроверсий вокруг его теорий и концепций в физике. Контент доступен только автору оплаченного проекта Нильс Бор и развитие ядерной физики Исследование вклада Нильса Бора в развитие ядерной физики, его работы в этой области и влияние на современные ядерные технологии. Контент доступен только автору оплаченного проекта Нильс Бор как общественный деятель Анализ общественной деятельности Нильса Бора, его вклада в научное сообщество, образование и науку, а также влияния на общественные процессы.

Контент доступен только автору оплаченного проекта Заключение Описание результатов работы, выводов.

Преодолеть её стало возможно лишь после того, как в начале 1916 Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [24]. Дальнейшее развитие теории. Принцип соответствия 1916—1923 [ ] Летом 1916 Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою теорию, пытаясь обобщить её на случай более сложных атомов, например, гелия.

В 1918 в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [26]. Начиная с 1918 , принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [27]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …«принцип соответствия», согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 Вернер Гейзенберг при построении своей матричной механики [29]. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки [29].

В 1921 — 1923 в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева , представив схему заполнения электронных орбит оболочек, согласно современной терминологии [30]. Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 нового элемента гафния Дирком Костером и Георгом Хевеши , работавшими в то время в Копенгагене [31]. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию , а не к редкоземельным элементам, как думали ранее [32]. В 1922 Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома» [33]. В своей лекции «О строении атомов» [34] , прочитанной в Стокгольме 11 декабря 1922 , Бор подвёл итоги десятилетней работы. Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира.

Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия простейшей двухэлектронной системе , которой они занимались с 1916. Бор отчётливо понимал ограниченность существующих подходов так называемой «старой квантовой теории» и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему. Принцип дополнительности 1924—1930 [ ] Альберт Эйнштейн и Нильс Бор. Брюссель 1930 Новой теорией стала квантовая механика , которая была создана в 1925 — 1927 годах в работах Вернера Гейзенберга , Эрвина Шрёдингера , Макса Борна, Поля Дирака [35]. Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий ибо использование классической терминологии уже не было правомерным , то есть дать интерпретацию её формализма. Именно над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор.

Итогом стала концепция дополнительности, которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927 [36]. Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [37] , что вылилось в совместную с Крамерсом и Джоном Слэтером статью, в которой было сделано неожиданное предположении о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер. Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ганса Гейгера [38]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 во время отпуска в Норвегии [39] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [40].

Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса [41]. Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики [42] и анализа процесса измерения [43] характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата, импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором. Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности [44]. Через месяц после конгресса в Комо, на пятом Сольвеевском конгрессе в Брюсселе , начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики [45].

Спор продолжился в 1930 на шестом конгрессе, а затем возобновился с новой силой в 1935 после появления известной работы [46] Эйнштейна, Подольского и Розена о полноте квантовой механики. Дискуссии не прекращались до самой смерти Эйнштейна [47] , порой принимая ожесточённый характер. Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 : Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья. Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [50]. В 1934 Бор пережил тяжёлую личную трагедию. Во время плавания на яхте в проливе Каттегат штормовой волной был смыт за борт его старший сын — 19-летний Христиан; обнаружить его так и не удалось [51].

Бору принадлежат также исследования по взаимодействию элементарных частиц с веществом. Бор создал большую школу физиков и многое сделал для развития сотрудничества между физиками всего мира. Его институт стал одним из ведущих научных центров; физики, стажировавшиеся в нём, работают почти во всех странах мира. Там работали и многие отечественные учёные в том числе Л. Бор неоднократно приезжал в СССР. Член более 20 академий и научных обществ мира. Нобелевская премия по физике «За заслуги в исследовании структуры атомов и исходящего от них излучения» 1922. Редакция физических наук Опубликовано 12 января 2023 г. Последнее обновление 12 января 2023 г.

103 года назад Нильс Бор предложил планетарную модель строения атома

Нильс Бор сообщил об открытии деления урана 85 лет назад. Великий физик Нильс Бор, родоначальник квантовой физики, Лауреат Нобелевской премии. Нильс Бор начал с открытий, сделанных Резерфордом, и продолжал развивать их, пока не смог наложить на них свой отпечаток. Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам. Он жил в «Доме чести» и был человеком чести. А ещё он произвёл революцию в физике. 28 февраля 1913 года Нильс Бор представил планетарную модель строения. Великий физик Нильс Бор, родоначальник квантовой физики, Лауреат Нобелевской премии.

Похожие новости:

Оцените статью
Добавить комментарий