Новости что такое кубит

Последние новости о разработке собраны в этой статье.

Что такое кубит в квантовом компьютере человеческим языком

Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему. Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы.

Квантовые вычисления для всех

(1) Сформулировать, что такое кубит. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов. Каждый лишний кубит играет большую роль – ведь он сразу повышает мощность вычислений в два раза.

Квантовые вычисления – следующий большой скачок для компьютеров

Telegram: Contact @postnauka Чтобы создать кубит, ученые должны найти место в материале, где они могут получить доступ к этим квантовым свойствам и управлять ими.
Что такое квантовый компьютер? Разбор | Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света.
В России представлен 16-кубитный квантовый компьютер К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии.
Квантовые вычисления для всех Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака).

Что такое кубит?

То есть каждый квантовый бит может вычислять параллельно с другими квантовыми битами системы. При этом бит может иметь несколько состояний одновременно — быть и нулём, и единицей. Или вообще многоуровневой системой, но мейнстрим сейчас — кубит, у него два уровня. Вычислительная мощность растёт экспоненциально с добавлением кубитов в систему 2n.

А в обычной системе она растёт квадратично n2. Современная наука находится в стадии понимания, что такое квантовая механика. Все законы частиц, взаимодействия атомов между собой описываются законами квантовой механики.

Эта наука отличается от того, что было до неё. Например, в квантовой механике есть принцип суперпозиции, благодаря которому размерность пространства состояний растёт экспоненциально. Классический компьютер просто не может это смоделировать.

А квантовый компьютер сам построен на таких явлениях и умеет работать с такими системами. Плюс в квантомеханической системе есть амплитуды вероятности с комплексными числами — у обычных компьютеров такого нет. Если взять задачу по разложению какого-то числа в 2 048 бит, то классический алгоритм будет раскладывать его за тысячу шагов и за 1 000 000 000 000 лет.

А алгоритм Шора, если бы был квантовый компьютер с нужным количеством кубит, сделает это за 107 шагов — примерно 10 секунд. Пока таких квантовых компьютеров нет, но те, которые есть, уже умеют делать то, на что классическому компьютеру понадобится огромное количество времени. Физик Дэвид ди Винченцо грамотно сформулировал пять основных критериев: 1 Сформулировать, что такое кубит.

Они бывают разные, сегодня есть несколько известных платформ — на атомах, ионах, сверхпроводниках, фотонах. Понять, как сделать так, чтобы кубит одновременно был нулем и единицей. В каждой из платформ введение в суперпозицию — отдельная задача и это позволяют делать разные физические принципы.

За каждым из этих явлений стоит много инженерных сложностей. Например, если измерить кубит, его состояние изменится и его нельзя клонировать. Или шумы, электромагнитные волны, частицы плохо влияют на систему, поэтому большинство платформ охлаждают всю систему до низких температур, чтобы минимизировать влияние шумов и пыли.

Но и работать в криогенике намного сложнее. Всё это усложняет создание квантовых компьютеров, поэтому сейчас максимально есть около 130 кубитов. Например, IBM выпустил 128-кубитную систему.

Но есть не только физические, но и логические кубиты. В чём разница?

Кубит, также, как и бит, может принимать значения 0 или 1, но, в отличие от бита, эти конкретные значения он принимает лишь при выводе результата вычислений. В процессе вычислений значение кубита определяется не единицей или нулём, а вероятностью наличия в нём одного из этих значений. При математическом описании работы квантового компьютера оперируют именно векторами. Если математически описывать физику процессов, происходящих в квантовом компьютере с кубитами при логических операциях с ними, то это будут умножения векторов, описывающих вероятностное состояния кубитов, на матрицы, описывающие эти самые логические операции. Если в обычном компьютере это простейшие логические операции «и», «или», «не», «исключающее или» и т.

Кроме вентильных матричных преобразований волновые функции кубитов можно складывать и вычитать, как можно складывать и вычитать обычные волны. В результате сложений волн вероятностей, как и на обычных волнах, возникает интерференция, которая позволяет влиять на состояние кубита, меняя вероятность получения в нём того или другого значения ноля или единицы. После всех вычислений и преобразований результирующая волновая функция вероятности при прочтении кубита превращается в ноль или единицу, и уже не отличается от бита. Применение квантовых вычислений Как видно из предыдущего объяснения, применять квантовый компьютер для обычных вычислений нет никакого смысла. А вот для определённого круга задач, где работа с вероятностями состояний вместо конкретных состояний на порядки повышает производительность, квантовый компьютер практически незаменим. Например, дешифрование на классическом компьютере занимает на порядки больше времени, чем само шифрование.

Это тоже должно расширить спектр задач, которые мы сможем решать на нашем компьютере. Таким образом, мы модернизируем почти все компоненты компьютера и параллельно в соседней комнате собираем еще один.

Обращаются с запросом много научных групп, но, к сожалению, большинству мы вынуждены отказывать, потому что стоим перед выбором: либо предоставить им компьютер, либо модернизировать его. И чаще выбираем модернизацию. Хотя бы примерно. Чтобы посчитать молекулу гидрида лития, запускается около 200 цепочек расчетов. Там довольно сложные алгоритм и постобработка. Каждую цепочку нужно запускать от 1 тыс. Кроме того, мы бы хотели провести научные исследования, чтобы масштабировать квантовые компьютеры. Для этого нужен третий компьютер, а лучше и четвертый.

Мы сейчас работаем с трехмерными ловушками. А для того, чтобы делать компьютеры с числом кубитов больше 50, нужно обязательно работать с планарными, то есть плоскими ловушками на чипах. Это отдельное направление. У нас уже изготовлены первые ловушки в сотрудничестве с Московским институтом электронной техники. Это пока не полноценный компьютер, нам нужно тестировать ловушки, смотреть, как захватываются ионы, делать новые модели. Фактически это еще одна система. Вот уже четыре системы, которые нужно иметь, чтобы проводить полноценные исследования в области квантовых вычислений. Вопрос, хватит ли времени.

Когда мы только начинали, я ожидал, что к этому времени у нас будет четыре-пять установок. Но мы ждем поставок. Часть уже в России, чего-то не хватает. Тем не менее, надеюсь, к середине следующего года мы запустим вторую установку, может, даже третью.

На данный момент мы сосредоточены как на программном, так и на аппаратном обеспечении, и в дальнейшем мы объединим их. Предстоит проделать огромный объем работы, чтобы охарактеризовать эти устройства, а затем написать много научных работ», — добавил Кларк. LPS Qubit Collaboratory LQC является одним из исследовательских центров министерства обороны в области квантовых информационных наук QIS , учреждённых в рамках Закона о национальной квантовой инициативе 2018 г. Intel заявляет, что сотрудничество с LQC поможет демократизировать кремниевые спиновые кубиты, позволив исследователям получить практический опыт работы с их масштабируемыми массивами. По словам Кларка, Intel предоставит квантовые устройства, в то время как исследовательские организации будут нести ответственность за приобретение и настройку необходимой инфраструктуры, такой как системы криоконтроля. Представители научных учреждений, участвующие в программе, единодушны в том, что участие Intel является важной вехой в демократизации исследования спиновых кубитов и их перспектив для квантовой обработки информации и ведёт к объединению промышленности, научных кругов, национальных лабораторий и правительства. По мнению учёных, устройство представляет собой гибкую платформу, позволяющую напрямую сравнивать различные кодировки кубитов и разрабатывать новые режимы работы, что позволяет внедрять новые квантовые операции и алгоритмы в многокубитном режиме и ускорять скорость обучения в квантовых системах на основе кремния. Исследователи также высоко оценивают надёжность Tunnel Falls, а возможность работать с промышленными устройствами Intel открывает, по их мнению, перспективы для технического прогресса и обучения. Intel планомерно работает над повышением производительности Tunnel Falls и интеграции его в свой полный квантовый стек с помощью комплекта Intel Quantum SDK. Кроме того, Intel уже разрабатывает свой квантовый чип следующего поколения на базе Tunnel Falls, ожидается, что он будет выпущен в 2024 году. В будущем Intel планирует сотрудничать с дополнительными исследовательскими институтами по всему миру для создания квантовой экосистемы. Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков. Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге. Учёный держит квантовый чип пинцетом, перед установкой на плату. Источник изображения: QuTech Исследователи уже не раз горели желанием сочетать сверхпроводящие и спиновые явления. Кубиты на основе сверхпроводников, которые используют стабильные состояния электромагнитных полей или моды, хорошо изучены и используются на практике в составе квантовых компьютеров IBM, Google и других. Такие кубиты хорошо взаимодействуют на больших расстояниях и легко управляются, хотя они относительно большие и имеют предел по скорости выполнения операций. Спиновые кубиты на атомах или элементарных частицах малы и могут массово выпускаться даже на полупроводниковых заводах из 80-х годов прошлого века. Но такие кубиты ограничены по дальности взаимодействия и управления. Как взять одни свойства перспективных кубитов и отбросить другие? Эту задачу попытались решить учёные из QuTech — исследовательской организации, созданной Делфтским технологическим университетом и Нидерландской организацией прикладных научных исследований TNO. В свежей работе, опубликованной в Nature Physics, учёные рассказали о создании и успешных испытаниях гибридной спиново-сверхпровдящей платформы. Можно сказать, что учёные улучшили так называемый «спиновый кубит Андреева», который строится на основе ряда квантовых эффектов, названных именем советского физика Александра Фёдоровича Андреева. В джозефсоновских контактах, где сверхпроводящий ток течёт без напряжения, существуют микроскопические электронные состояния — андреевские уровни, каждый из которых может рассматриваться как микроскопический источник эффекта Джозефсона. Они же являются родительскими состояниями майорановских мод. Джозефсоновские переходы или контакты способны также захватывать сверхпроводящие квазичастицы со своими спинами. Тем самым появляется связь между сверхтоками и спинами. Сверхпроводящим током можно изменять направление спина, а детектирование спина может регистрировать сверхпроводящие токи. Это говорит о том, что "спиновый кубит Андреева" может стать ключевым элементом для соединения квантовых процессоров, основанных на радикально различных технологиях кубитов: полупроводниковых спиновых кубитах и сверхпроводящих кубитах». Учёные всего мира ищут возможность продлить квантовые состояния кубитов до возможности запуска на них сложных алгоритмов. Речь идёт хотя бы о секундах, не говоря о более длительном времени.

Что такое квантовый компьютер и как он работает

Один кубит – это атом или фотон – мельчайшая частица вещества или энергии. Начнем с понятия кубита и его отличий от бита классических компьютеров. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит.

Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов

Превосходства над чем? Руслан Юнусов: Над суперкомпьютерами. Им были предложены тесты, с которыми квантовые, имея всего несколько десятков кубитов, справились за несколько минут. Так вот суперкомпьютерам они оказались вообще не под силу. Безоговорочная победа? Значит, квантовые машины уже сейчас можно выпускать в "люди"? Руслан Юнусов: Увы, к этому мы еще не пришли.

Да, квантовый победил, но в специальных, абстрактных тестах. А вот для реальных задач в промышленных масштабах он пока не приспособлен. Не может соперничать с традиционными компьютерами. Для этого нужны системы с многими тысячами, а возможно, миллионами кубит. Но если уже собрали вычислитель из сотен кубитов, почему нельзя, как в конструкторе ЛЕГО, объединить десятки тысяч, миллионы? Руслан Юнусов: Собрать, конечно, можно, но есть проблема - надежность.

И она сейчас является ключевой. Чем больше мы хотим объединить кубитов, тем сильней они влияют друг на друга. Как следствие, начинают вылезать ошибки. Понятно, что нам нужны точные, безошибочные вычисления. Кроме того, в отличие от работы кремниевого устройства квантовые состояния довольно неустойчивые. Для защиты от разных внешних воздействий необходимы специальные условия.

Все это дает повод скептикам утверждать, что собрать одновременно много кубитов и обеспечить надежность, безошибочную работу такой большой системы никогда не удастся. Либо одно, либо другое. Но с таким же упорством скептики заявляли, что никогда не удастся достичь квантового превосходства, а это произошло. Важно, что таких примеров становится все больше. Ключевой вопрос Квантовая криптография обеспечит полную защиту информации. Фото: iStock У лидеров собраны системы из сотен кубитов, движутся к тысячам, у нас 16.

Грустная цифра. Руслан Юнусов: Год назад, когда у нас было 4 кубита, а у них сотни, я бы признал, что мы сильно отстаем. Сейчас ситуация кардинально иная. Важно, что мы не только достигли 16 кубитов, главное - есть четкое понимание, как к концу 2024 года выйти на сотню, а затем и на тысячи кубитов. А также достичь квантового превосходства. На самом деле число кубитов - не самоцель.

Как я уже говорил, надо иметь не просто много кубитов, а много хороших кубитов. Например, ионный процессор одного из наших зарубежных коллег всего на 20-30 кубитах бьет системы с сотнями кубитов.

Электрический ток я представлял себе как толпу таких мячиков, несущихся по проводу-трубе. Больше мячиков — значит больше ампер силы тока , быстрее бегут — больше вольт напряжение , шире труба — значит меньше сопротивление. Сам я тоже сделан из таких атомов-мячиков, которые по неведомой мне причине решили притянуться друг другу и образовать такую вот причудливую форму меня. Ну круто же! Так вот теперь время для первой важной части этого поста. Если мне удастся донести хотя бы это, значит вы уже поймете огромную часть квантовой механики, даже если сразу закроете пост после этого.

Мячики, вы лучшие, мы еще вспомним о вас! Но когда мы говорим о квантовой физике, наши частицы больше не работают как мячики. Они живут как волны. Как круги на воде или звуки от гитарных струн, представляйте как удобнее. Волны — это новые мячики Срач о том, реально ли всё это волны или мы просто натянули имевшиеся для волн уравнения и сказали «опа, а вроде подходит» — один из самых громких споров современных физиков. Там рвут глотки и делятся на лагеря, так что давайте не будем и просто примем, что тот же самый мячик может ВЖУХ и быть посчитан как волна. Так нам удобно и всё. Отныне мы состоим не из мячиков, а из таких вот волнушечек, которые как-то между собой интерферируют и получается Олег.

Вот прям как звуковые волны накладываются чтобы получилась музыка, так же вот и Олег. Главный же прикол в том, что кроме волн больше нет ничего. Вообще ничего. Никаких скрытых параметров, по крайней мере локальных. Абсолютно любое свойство объекта отныне можно описать одной такой жирной функцией взаимодействия этих волн друг с другом. Как в телевизор приходят радиоволны и получается картинка на экране, так же наши волнушечки могут собраться по какой-то формуле и сделать Олега. Фотоны света отражатся от волн Олега и так его себе видим. Но реален ли сам Олег?

Тут лучше не торопиться. Можете вернуться к посту вечером. Суперпозиция — всего лишь вероятность Объясняя, что за фигня такая ваша «суперпозиция», все вспоминают байку с Котом Шредингера, закрытого в коробке со случайно взрывающейся колбой смертельного яда. Страшилка с котом уже лет 50 используется в школьной программе и авторы большей части статей, что я читал, тоже её обожают, даже несмотря на то, что она не даёт читателю никакого понимания как всё это реально можно использовать на практике. Пора прекратить шутить шутку 100-летней давности. Люди в 21 веке могут себе позволить среднее образование и понять тему чуть глубже. Предлагаю поговорить о суперпозиции как будто мы люди с айфонами, а не крепостным правом. Потому вместо кота мы возьмем монетку :D Когда мы раскручиваем или подбрасываем её в воздух — она находится в суперпозиции орла и решки.

Да, «как бы» одновременно. Только поймав монетку мы получаем один из результатов нашего измерения. Не поймаем — не узнаем. В чем же драматическая разница с так нелюбимым нами котом? В том, что внутри монетки всегда есть чёткие вероятности её падения орлом или решкой. Но если мы зададимся целью немного «подкрутить» фокус себе на пользу — мы можем сделать монетку из разных сплавов или как-то притягивать одну из сторон магнитом. Отныне всегда, когда слышите про суперпозицию, представляйте себе именно такую подброшенную монетку. Суперпозиция — не загадочный феномен «одновременности», а чёткое и простое отношение двух вероятностей Находясь в «суперпозиции», монетка не просто для нас «как бы одновременно орел и решка», она имеет две вполне стабильные и известные нам вероятности выпадения одного и другого.

Всё это уже намного удобнее использовать на практике, не правда ли? Вероятности мы умеем складывать, умножать, творить другие непотребства, в отличии от мертвых котов. Поэтому и дальше, когда мы будем говорить о квантовых битах, про которые все говорят, что они «одновременно 1 и 0», забейте на это и представляйте себе их как монетки. Каждый бит-монетка имеет строгую вероятностью быть прочитанным как 1 и строгую вероятность 0. Компьютер же может управлять этими вероятностями прямо в полёте пока не прочитает сам бит. Прочитали бит — поймали монетку. Очень удобно. Если вы поняли монетки — вы уже наполовину поняли квантовый компьютер, поздравляю.

Простите, я должен был использовать этот каламбур. Представим себе, что мы распилили нашу монетку вдоль. Как печеньки Oreo. Получилось две монетки — одна только с орлом, вторая только с решкой. Пустая сторона разреза нас щас не интересует. Не подглядывая где какая, мы подбрасываем обе новых монетки в воздух переводим в суперпозицию, как мы теперь знаем. Монетки начинают вертеться в воздухе и не падают потому что они теоретические! Тут квантовый физик скажет, что между монетками создана запутанность.

Дополнительные состояния позволяют плотнее кодировать данные в физических носителях, что, в свою очередь, дает возможность реализовывать все более сложные и комплексные квантовые алгоритмы. Таким образом возрастает мощность квантового процессора , и операции могут производиться значительно быстрее, пояснили исследователи. По состоянию на апрель 2023 года, большая часть исследований, посвященных квантовым операциям, сосредоточена на кубитах — все операции, которые применяются к квантовой системе, представляются в виде одно- и двухкубитных квантовых вентилей, преобразующих входные состояния кубитов в выходные по определенному закону. Для работы с кудитами важно найти новые подходы с математической точки зрения. Ученые Университета МИСиС и Российского квантового центра рассмотрели один из способов использования куквинтов — 5-уровневых кудитов — и представили модель декомпозиции обобщенного вентиля Тоффоли. В качестве примера рассмотрен квантовый алгоритм Гровера для поиска по неупорядоченной базе данных. Известно, что, используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор. Такое рассмотрение помогает одновременно и сократить число физических носителей информации, и использовать дополнительный уровень в качестве вспомогательного состояния для упрощения декомпозиции многокубитных вентилей, или как их еще называют — гейтов — сложных логических операций с кубитами. Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, то есть задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров. Заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров В качестве раскладываемого многокубитного гейта ученые выбрали часто встречающийся в квантовых алгоритмах многокубитный гейт Тоффоли — обобщенную на n кубитов версию универсального контролируемого обратимого вентиля.

Его применение инвертирует состояние n-го кубита, если все остальные n-1 кубитов находятся в состоянии 1. Как отметили исследователи, располагая в каждом куквинте по два кубита и используя пятый уровень в качестве вспомогательного, можно значительно сократить число двухчастичных гейтов в его разложении по сравнению с расположениями на кубитах и таким образом повысить качество выполнения квантовых алгоритмов. Для демонстрации процессов был выбран именно этот алгоритм, так как для его выполнения необходимо неоднократно реализовать многокубитные гейты. Мы сравнили три способа декомпозиции многокубитных вентилей в рамках выполнения данного алгоритма на 2-10 кубитах, когда в качестве носителей информации используются кубиты, кутриты и куквинты, и продемонстрировали, как сокращается число двухчастичных гейтов», — пояснила эксперт научного проекта НИТУ МИСиС, научный сотрудник РКЦ Анастасия Николаева. Например, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88. Полученные учеными результаты применимы к квантовым процессорам , основанным на различных физических платформах, таких как ионы, нейтральные атомы, сверхпроводящие цепи и другие. Статья опубликована в научном журнале Entropy. Баумана одни из первых в мире смогли реализовать двухкубитную операцию, используя сверхпроводящие флаксониевые кубиты — альтернативу популярным трансмонам. Особенность флаксониумов состоит в более продолжительном жизненном цикле и большей точности операций, что дает возможность выполнять более длинные алгоритмы. Как известно, одна из основных проблем разработки универсального квантового вычислителя заключается в кубитах, а именно — из каких квантовых объектов лучше всего делать процессоры для квантовых компьютеров : электронов, фотонов, ионов, сверхпроводников или других кандидатов в «квантовые транзисторы».

За последние десять лет сверхпроводниковые кубиты получили огромный толчок в развитии. При этом самыми коммерчески успешными сверхпроводящими кубитами по состоянию на 2022 год являются трансмоны, которые активно исследуются и используются в квантовых разработках Google , IBM и других мировых лабораторий, рассказали в НИТУ МИСИС. По словам ученых, главная задача кубита — целостно хранить и обрабатывать информацию. Случайный шум и даже просто наблюдение способны привести к потере или изменению данных. Для устойчивой работы сверхпроводниковых кубитов часто необходима чрезвычайно низкая температура окружающей среды — близкая к нулю Кельвин, что в сотни раз холоднее температуры открытого космоса. В ходе испытаний для защиты кубитов от шума исследователи добавили в цепь супериндуктор — сверхпроводниковый элемент с высоким уровнем сопротивления переменному току, который представляет собой цепочку из 40 джозефсоновских контактов — структур из двух сверхпроводников, разделенных тонким слоем диэлектрика. Основной плюс флаксониумов заключается в том, что с ними можно работать на низкой частоте — порядка 600МГц. Известно, что чем меньше частота, тем больше время жизни кубитов, а значит больше операций с ними можно выполнить. В ходе испытаний оказалось, что диэлектрические потери флаксониевых кубитов позволяют держать состояние суперпозиции дольше, чем у трансмонов», — рассказал Илья Беседин, один из авторов исследования, инженер научного проекта лаборатории «Сверхпроводящие метаматериалы» НИТУ МИСИС. В качестве элемента, преобразующего входные состояния кубитов на выходные, ученые использовали высокоточные двухкубитные вентили fSim и CZ.

А для того, чтобы привести кубиты в резонанс друг с другом применялась параметрическая модуляция потока одного из кубитов системы. В целом, по мнению ученых, полученные результаты открывают многообещающий подход к отказоустойчивым квантовым вычислениям с низкочастотными кубитами, которые благодаря своим улучшенным когерентным свойствам могут стать конкурентоспособной альтернативой широко используемым сверхпроводниковым процессорам на кубитах-трансмонах.

Российские достижения Российские разработчики тоже работают над квантовыми технологиями, но соревнуются пока внутри страны. Ученые из МФТИ сообщили о запуске первого российского 12-кубитного квантового процессора в январе 2024 г. Для практического применения и достижения конкурентного преимущества необходим квантовый процессор минимум из 100 кубитов.

В феврале 2024 г. Мы его реализовали на ионной платформе. Также у нас есть 25-кубитный компьютер на атомной платформе.

Физик Алексей Устинов о российских кубитах и перспективах их использования

В процессе вычислений значение кубита определяется не единицей или нулём, а вероятностью наличия в нём одного из этих значений. Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы).

Как работают квантовые процессоры. Объяснили простыми словами

Последние новости о разработке собраны в этой статье. Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления. Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела. Суперпозиция кубита может быть представлена вероятностной функцией |ψ, которая зависит от амплитуды кубита в гильбертовом пространстве α и β.

Как работает квантовый компьютер: простыми словами о будущем

Это наименьшая единица информации - один бит. В квантовом компьютере все иначе. Квантовый бит кубит может быть одновременно и в состояниях "0" и "1", и во всех их комбинациях. Кубит - это элементарная единица информации в квантовых вычислениях. Конечно, с точки зрения большинства людей, это звучит совершенно невероятно, но квантовая физика открывает такую возможность. Именно она позволяет квантовому компьютеру за счет параллельного выполнения сразу нескольких операций быстро решать задачи, которые не по силам мощному суперкомпьютеру. Самое главное, что квантовый выбирает из множества вариантов решения по-настоящему лучший, а не просто оптимальный.

Основа традиционного компьютера - кремниевый транзистор, а на чем строится квантовый? Руслан Юнусов: Здесь пока ситуация неопределенная. Мир еще не выбрал лучшую технологию. Сейчас конкурируют 4 варианта кубитов: на одиночных атомах, ионах, сверхпроводниках, фотонах. У каждой платформы есть свои плюсы и минусы. Возможно, какая-то одна в конце концов вытеснит остальных конкурентов.

А может, останутся все, и каждая окажется наилучшей для определенного класса задач. Ваше превосходство О фантастических возможностях квантового компьютера говорят лет 40, но вот о кардинальных прорывах не слышно. Зато есть достаточно авторитетные скептики, которые утверждают, что он вообще никогда не будет создан. Что это игрушка, которой морочат голову и умело выбивают огромные деньги, удовлетворяя собственное любопытство. Руслан Юнусов: Да, такое мнение существует. Но скептики всегда были, есть и будут.

Это нормально. Напомню, что сама идея квантового компьютера была сформулирована в 80-е годы, а первые кубиты появились только через 20 лет, на рубеже 2000-х годов. Прошло еще 20 лет, и сейчас лидеры делают вычислители с сотнями кубитов. Что касается глобальных достижений, то за последние годы произошло как минимум несколько. Так, группы в США и Китае смогли достичь так называемого квантового превосходства. Превосходства над чем?

Руслан Юнусов: Над суперкомпьютерами. Им были предложены тесты, с которыми квантовые, имея всего несколько десятков кубитов, справились за несколько минут. Так вот суперкомпьютерам они оказались вообще не под силу. Безоговорочная победа? Значит, квантовые машины уже сейчас можно выпускать в "люди"? Руслан Юнусов: Увы, к этому мы еще не пришли.

Да, квантовый победил, но в специальных, абстрактных тестах. А вот для реальных задач в промышленных масштабах он пока не приспособлен.

Для практического применения и достижения конкурентного преимущества необходим квантовый процессор минимум из 100 кубитов. В феврале 2024 г. Мы его реализовали на ионной платформе. Также у нас есть 25-кубитный компьютер на атомной платформе. Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать.

Это связано и с настройками, и с созданием такой программы. Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли. Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать. Мы занимаемся и улучшением достоверности. На сегодня она лимитирована двумя факторами. Это значит, что у нас есть только одна частота, и на ней вся мощность. Чем меньше шумов в лазере, тем выше достоверность. Задача нетривиальная, в мире не так много людей умеют это делать. Это одни из самых точных и чистых спектральных лазеров в мире. Он изготовлен, идет измерение характеристик и калибровка. После того как мы поставим новый, немного изменим систему привязки к нему лазера. Хотим использовать схему injection locking. Смысл такой: берем свет, прошедший через резонатор, и заводим его в лазерный диод, и этот лазерный диод начинает генерировать точно такое же излучение, какое прошло через резонатор. Излучение, пройдя через резонатор, становится очень чистым. В итоге мы глубоко улучшаем лазерную систему, которая используется для взаимодействия с ионами. Нам надо, чтобы они двигались всегда одинаково, а сейчас они двигаются в течение большого промежутка времени — дня например, немного по-разному. С высокой достоверностью — В целом удается повысить достоверность? Мы далеко продвинулись, но последние проценты всегда самые сложные. Мы также увеличиваем время когерентности нашей системы, модернизируя систему компенсации магнитного поля вблизи иона. Добиваемся, чтобы магнитное поле было одинаковым и стабильным. Раньше мы для этого использовали катушки и прецизионные источники тока, сейчас переходим на постоянные магниты.

И тут на горизонте возникает новая область — квантовые вычисления, которая, кажется, имеет все шансы на повторение такого поразительного взлёта. Сообщение о способности квантового компьютера на практике решать задачу, принципиально неподвластную классическому вычислителю, для многих стало сигналом о том, что компьютеры нового типа неизбежно достигнут нужного уровня совершенства и займут свою нишу уже в ближайшем будущем. Ещё больше подогрели интерес к ситуации сами исследователи Google, заявив, что по аналогии с законом Мура для классических компьютеров, можно ожидать роста характеристик квантовых вычислителей с экспоненциальной скоростью [1]. Оглашение подобной перспективы мгновенно привело к взрывному росту числа тематических публикаций, регистрируемых патентов, а также компаний-стартапов в области квантовых вычислений [3]. Рост числа публикаций по теме квантовых вычислений [4. Тезис демонстрации квантового превосходства в значительной мере подвергается критике. Задача, на которой он был продемонстрирован, в реальности бесполезна, а временные рамки обещаний практически значимого квантового вычислителя постоянно сдвигаются [5 ; 6; 7]. В этом, безусловно, есть доля истины. Но настолько ли далека перспектива распространения квантовых вычислителей, чтобы можно было обходить их вниманием? Цель данной статьи — сформировать у читателя понимание возможных сценариев развития квантовых компьютеров, их потенциального места среди других существующих технологий, а также текущего прогресса в борьбе с практическими ограничениями, препятствующими широкому распространению продуктов и сервисов на основе квантовых вычислений уже сегодня. Парадигма квантовых вычислений Прежде всего определим, какое место квантовые вычислители могут в перспективе занять в устоявшейся индустрии информационных технологий. Как известно, классические компьютеры оперируют битами — единицами информации, которые позволяют различить два состояния системы: 0 и 1. В основе логики квантового компьютера лежит схожее понятие — кубит. Кубит — объём информации, описывающий квантовую систему с двумя состояниями. В отличие от бита, кубит может принимать промежуточные значения, сочетающие вклад состояний 1 и 0 в разных пропорциях. Если кубита два, то возможных вкладов в состояние становится четыре: 00, 01, 10, 11. И так далее в геометрической прогрессии. Если число кубитов приближается к нескольким сотням, то памяти всех классических компьютеров не хватит, чтобы сохранить полный объём информации о состоянии такого регистра. На практике это в совокупности с особенностями обработки и считывания квантовой информации приводит к тому, что отдельные задачи на квантовом вычислителе начинают решаться качественно быстрее, чем на классическом. Например квантовый алгоритм Шора позволяет разложить число на простые множители с экспоненциальным ускорением [8], а алгоритм Гровера — осуществить поиск по неструктурированной базе данных с квадратичным ускорением [9]. Из первого следует потенциальное разрушение криптографической стойкости шифров с открытым ключом на основе RSA, а из второго — квадратичное ускорение решения любой NP-задачи и соответствующее снижение стойкости симметричных шифров. То есть для обеспечения того же уровня секретности понадобится вдвое более длинный ключ. Математически доказано, что квантовый компьютер способен эффективно моделировать классический [10]. То есть всё, на что способен классический компьютер, квантовый компьютер способен исполнить по крайней мере не хуже. Однако на практике квантовый компьютер сегодня — весьма сложная лабораторная установка, отдельные элементы которой зачастую требуют криогенного охлаждения. Главным ограничением квантового компьютера является ограничение по объёму обрабатываемых данных. В лучшем случае сегодня это несколько сотен кубитов, что никак нельзя сравнить с доступными классическим вычислителям гигабайтами оперативной памяти. Поэтому реальный сценарий использования квантового вычислителя — гибридный. Вся инфраструктура остаётся классической, и только при необходимости произведения отдельных специфичных расчётов классическая программа удалённо подключается к квантовому вычислителю, передаёт ему данные и считывает результат. Единственная технология, которая остаётся за рамками такой картины — квантовые коммуникации. Квантовая криптография, которая как раз способна обеспечить концептуальную защиту от атаки квантовым вычислителем, требует создания новой инфраструктуры для передачи квантовой информации. Это может быть оптическое волокно или атмосферный лазерный канал. Не исключается использование на оптическом канале дронов и спутников. Также, помимо непосредственно программируемых квантовых компьютеров, возможно использование проблемно-специфичных квантовых устройств. С их помощью, например, на линиях квантовых коммуникаций может осуществляться коррекция ошибки без считывания квантового состояния. Данный тип устройств не предъявляет больших требований по числу кубитов или объёму исполняемой программы и теоретически может быть реализован на имеющейся сегодня технологической базе. Из всего перечисленного выше формируется образ перспективной информационной инфраструктуры. Квантовые вычислители не повлияют существенным образом на облик имеющихся сегодня сервисов, оставив все конечные пользовательские интерфейсы привычно классическими. Может повыситься скорость обработки данных в отдельных задачах за счёт доступа пользовательских устройств к облачным квантово-вычислительным сервисам. Также появится квантовая информационная инфраструктура, в первую очередь для квантовой криптографии. Это будут стационарные, либо мобильные, но маловероятно, что карманные устройства для квантового распределения ключей. Вполне возможно, что более простые и компактные по сравнению с полноценными компьютерами квантовые вычислительные системы будут использоваться на конечных пользовательских узлах для обработки квантовой информации. Квантовые алгоритмы и возможности квантовых вычислителей Ступень развития, на которой сегодня находятся квантовые вычислители, получила название NISQ — Noisy Intermediate-Scale Quantum — квантовые устройства среднего масштаба без коррекции ошибок. Название отражает две главные проблемы, сдерживающие развитие квантовых компьютеров — сложность создания регистра большого объёма и большая подверженность влиянию внешних шумов. Две этих проблемы неразрывно связаны. То, что под влиянием шума квантовые состояния со временем теряют заложенную в них информацию, влияет на нашу способность контролировать одновременно большое число кубитов. Экспериментальные реализации квантовых вычислителей только чуть более года назад перешагнули рубеж в 100 кубитов в регистре [11]. Теоретически, этого уже достаточно, для экспериментальной реализации некоторых алгоритмов криптоанализа. Атака полноценного AES-128 может быть выполнена при 384 доступных кубитах [13]. Однако глубина данного алгоритма такова, что к концу его исполнения полезная информация в вычислительном регистре будет почти полностью уничтожена шумами. Справиться с такими нежелательными эффектами призвана технология коррекции ошибок. Вероятность того, что несколько кубитов одновременно потеряют информацию о своём состоянии под действием шумов — ниже, чем для одного. Для коррекции ошибок вводится понятие логического кубита, состояние которого кодируется несколькими физическими кубитами. Если часть физических кубитов, кодирующих один логический, оказалась зашумлена, их состояния могут быть восстановлены с опорой на информацию, сохранённую в остальных кубитах. Таким образом, для повреждения состояния логического кубита необходимо, чтобы к моменту выполнения коррекции большая доля физических кубитов была значительно зашумлена. Такой подход в теории позволяет бороться с шумами, но кратно увеличивает требования к объёму регистра квантовых вычислителей. Объём регистра, необходимого для выполнения атаки Гровреа на AES с применением коррекции ошибок составляет от нескольких тысяч до десятков тысяч кубитов. Объём регистра, необходимого для атаки шифра RSA алгоритмом Шора преодолевает порог в сто тысяч кубитов.

Рекорд Китая

  • Технологии квантовых компьютеров в 2022: достижения, ограничения | Quantum Crypto
  • Квантовый компьютер: что это, отличие от обычного, как купить и стоит ли покупать
  • Что такое квантовые вычисления? - Linux Mint Россия
  • Квантовый бит — QMLCourse

Похожие новости:

Оцените статью
Добавить комментарий