Новости почему поверхностное натяжение зависит от рода жидкости

Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой. Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Рис.2.5. Зависимость поверхностного натяжения неполярной жидкости от Т. Другие вещества менее строго следуют этой зависимости, но часто отклонениями можно пренебречь, т.к. dσ/dТ слабо зависит от температуры (для воды dσ/dТ= -0,16 10-3 Дж/м2). Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой.

Почему поверхностное натяжение зависит от вида жидкости

Например, мыло. Присутствия каких-либо примесей. Свойств газа, контактирующего с жидкостью. Чем вызвано поверхностное натяжение Причина возникновения явления поверхностного напряжения: молекулы, которые составляют верхний слой жидкости. Они создают взаимодействие между собой, возникает натяжение. Жидкости стремятся принять форму, которая требует минимальной площади поверхности.

Каковы особенности поверхностного слоя жидкости На свободной поверхности жидкости молекулы находятся в особых условиях, отличающихся от условий, в которых находятся молекулы внутри жидкости. Рассмотрим две молекулы — А и Б рис. Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, то есть их равнодействующая равна нулю.

Молекула Б с одной стороны окружена молекулами жидкости, а с другой — молекулами газа. Чтобы молекула из глубины попала в поверхностный слой, нужно совершить работу против межмолекулярных сил. Это означает, что молекулы поверхностного слоя жидкости по сравнению с молекулами внутри жидкости обладают избыточной потенциальной энергией. Эта избыточная энергия является частью внутренней энергии жидкости и называется поверхностной энергией Wпов. Поверхностное натяжение жидкости — физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости: Единица поверхностного натяжения в СИ — ньютон на метр: Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит: от природы жидкости: у летучих жидкостей эфир, спирт, бензин поверхностное натяжение меньше, чем у нелетучих ртуть, жидкие металлы ; температуры жидкости: чем выше температура жидкости, тем меньше поверхностное натяжение; присутствия в составе жидкости поверхностно активных веществ — их наличие уменьшает поверхностное натяжение; свойств газа, с которым жидкость граничит. В таблицах обычно приводят значение поверхностного натяжения на границе жидкости и воздуха при определенной температуре табл. То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности от того, насколько пленка деформирована , а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта. Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму рис. Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить рис. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Почему поверхностное натяжение зависит от рода воды? Почему поверхностное натяжение зависит от рода жидкости?

Они взаимодействуют с водой сильнее, чем молекулы воды между собой. Явление изменения концентрации вещества в поверхностном слое жидкости в результате его самопроизвольного перехода из объема фазы называется адсорбцией. Адсорбционное равновесие определяется двумя процессами: притяжением молекул к поверхности под действием межмолекулярных сил и тепловым движением, стремящимся восстановить равенство концентраций в поверхностном слое и объеме фазы. Адсорбцию растворенного вещества на границе раствор — воздух целесообразно рассматривать с термодинамических позиций и связывать ее с изменением энергии поверхности или ее поверхностного натяжения. Гиббс установил зависимость между избытком адсорбированного вещества в поверхностном слое Г, активностью растворенного вещества в растворе a и поверхностным натяжением s на границе жидкость — газ: 3. Из уравнения Гиббса 3. Зависимость поверхностного натяжения от концентрации для ПАВ достаточно точно подчиняется эмпирическому уравнению, выведенному Б. Шишковским: , 3. Дифференцируя 3. Согласно Ленгмюру в условиях предельной адсорбции на границе раздела жидкость — газ образуется слой поверхностно-активного вещества толщиной в 1 молекулу мономолекулярный слой , в котором адсорбированные молекулы ориентируются вертикально, занимая на поверхности минимальную площадь. Копирование текстов разрешено только с указанием индексируемой ссылки на источник.

Что такое поверхностное натяжение?

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия при-месей. Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Почему у воды поверхностное натяжение больше, чем у других жидкостей? Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий. Поверхностное натяжение воды и других жидкостей зависит от рода жидкости из-за различий в их межмолекулярных силах.

Поверхностное натяжение

Поверхностное натяжение жидкости - формулы и определение с примерами #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать.
Остались вопросы? Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается.
Почему поверхностное натяжение зависит от рода жидкости? Ответил (1 человек) на Вопрос: Почему поверхностное натяжение зависит от рода жидкости.

Вода с низким поверхностным натяжением

Следует отметить, что всякое серьёзное научное исследование в области физики гетерогенных систем требует измерения поверхностного натяжения. История экспериментальных методов определения поверхностного натяжения, насчитывающая более двух столетий, прошла путь от простых и грубых способов до прецизионных методик, позволяющих находить поверхностное натяжение с точностью до сотых долей процента. Интерес к этой проблеме особенно возрос в последние десятилетия в связи с выходом человека в космос, развитием промышленного строения, где капиллярные силы в различных устройствах часто играют определяющую роль. Один из таких методов определения поверхностного натяжения основан на поднятии смачивающей жидкости между двумя стеклянными пластинками. Их следует опустить в сосуд с водой и постепенно сближать параллельно друг другу. Вода начнёт подниматься между пластинками — её будет втягивать сила поверхностного натяжения, о которой сказано выше. Вода поднимется и образует между пластинками удивительно правильную поверхность. Сечение этой поверхности вертикальной плоскостью — гипербола.

Для доказательства достаточно в формулу 1 вместо d подставить новое выражение для зазора в данном месте. Из подобия соответствующих треугольников см. Здесь D — зазор на конце, L — по-прежнему длина пластинки, а x — расстояние от места соприкосновения пластинок до места, где определяется зазор и высота уровня. Смачивание и несмачивание Для детального изучения капиллярных явлений следует рассмотреть и некоторые молекулярные явления, обнаруживающиеся на трёхфазной границе сосуществования твёрдой, жидкой, газообразной фаз, в частности рассматривается соприкосновение жидкости с твёрдым телом. Если силы сцепления между молекулами жидкости больше, чем между молекулами твёрдого тела, то жидкость стремится уменьшить границу площадь своего соприкосновения с твёрдым телом, по возможности отступая от него. Капля такой жидкости на горизонтальной поверхности твёрдого тела примет форму сплюснутого шара. В этом случае жидкость называется несмачивающей твёрдое тело.

В этом случае твёрдая поверхность, несмачиваемая жидкостью называется гидрофобной, или олоефильной. Если же силы сцепления между молекулами жидкости меньше, чем между молекулами жидкости и твёрдого тела, то жидкость стремится увеличить границу соприкосновения с твёрдым телом. Поверхность же будет носить название гидрофильная. Однако это практически никогда не наблюдается, так как между молекулами жидкости и твёрдого тела всегда действуют силы притяжения. Полное смачивание или полное несмачиваение являются крайними случаями. Между ними в зависимости от соотношения молекулярных сил промежуточное положение занимают переходные случаи неполного смачивания. Смачиваемость и несмачиваемость — понятия относительные: жидкость,смачивающая одно твёрдое тело, может не смачивать другое тело.

Например,вода смачивает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает медь. Смачивание обычно трактуется как результат действия сил поверхностного натяжения. В случае равновесия все силы должны уравновешивать друг друга. Определённое влияние на смачивание оказывает состояние поверхности. Смачиваемость резко меняется уже при наличии мономолекулярного слоя углеводородов. Последние же всегда присутствуют в атмосфере в достаточных количествах. Определённое влияние на смачивание оказывает и микрорельеф поверхности.

Однако до настоящего времени пока не выявлена единая закономерность влияния шероховатости любой поверхности на смачивание её любой жидкостью. Однако на практике это уравнение не всегда соблюдается. Исходя из этого и даются, как правило, сведения о влиянии шероховатости на смачивание. По мнению многих авторов, скорость растекания жидкости на шероховатой поверхности ниже вследствие того, что жидкость при растекании испытывает задерживающее влияние встречающихся бугорков гребней шероховатостей. Необходимо отметить, что именно скорость изменения диаметра пятна, образованного строго дозированной каплей жидкости, нанесённой на чистую поверхность материала, используется в качестве основной характеристики смачивания в капиллярах. Её величина зависит как от поверхностных явлений, так и от вязкости жидкости, её плотности, летучести. Очевидно, что более вязкая жидкость с прочими одинаковыми свойствами дольше растекается по поверхности и следовательно медленнее протекает по капиллярному каналу.

Капиллярные явления Капиллярные явления, совокупность явлений, обусловленных поверхностным натяжением на границе раздела несмешивающихся сред в системах жидкость - жидкость, жидкость - газ или пар при наличии искривления поверхности. Частный случай поверхностных явлений.

Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента. Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью.

В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами см.

По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения.

Из рис. В соответствии с 37. Это имеет место в двух случаях. В этом случае жидкость неограниченно растекается по поверхности твердого тела — имеет место полное смачивание. Замена поверхности твердое тело — газ двумя поверхностями, твердое тело — жидкость и жидкость — газ, оказывается энергетически выгодной. При полном смачивании краевой угол равен нулю. Замена поверхности твердое тело — жидкость двумя поверхностями, твердое тело — газ и жидкость — газ, оказывается энергетически выгодной. В этом случае имеет место частичное смачивание.

Почему поверхностное натяжение зависит от вида жидкости?

Это влияет на силу взаимодействия между молекулами и, следовательно, на величину коэффициента поверхностного натяжения. Например, молекулы воды образуют водородные связи, что приводит к высокому коэффициенту поверхностного натяжения, а углеводороды обычно имеют низкий коэффициент поверхностного натяжения. Зависимость от наличия примесей Наличие примесей в жидкости может также влиять на величину коэффициента поверхностного натяжения. Примеси могут изменять межмолекулярные взаимодействия, приводя к изменению силы сцепления молекул у поверхности. Например, добавление поверхностно-активных веществ, таких как мыло или детергенты, может снизить коэффициент поверхностного натяжения. Это происходит за счет того, что эти вещества изменяют ориентацию молекул и уменьшают силу межмолекулярного взаимодействия.

Гость Ответ ы на вопрос: Гость Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму.

Вайскопфом в США [5]. Поверхностное натяжение возникает на границе газообразных , жидких и твёрдых тел. Обычно под термином «поверхностное натяжение» имеется в виду поверхностное натяжение жидких тел на границе жидкость — газ. В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

Прибор для измерения поверхностного натяжения называется тензиометр.

Поверхностное натяжение также зависит от размера молекул и их формы. Молекулы, которые имеют больший размер или могут формировать сложные структуры, могут создавать более сильные связи и, следовательно, иметь более высокое поверхностное натяжение. Изучение связи молекулярных свойств с поверхностным натяжением позволяет лучше понять не только физическую природу этого явления, но и его важность в различных процессах и приложениях, включая капиллярность, смачивание и адгезию. Количество изученных жидкостей существует ограниченное число, и дальнейшие исследования помогут расширить наши знания в этой области. Роль полярности и неполярности в поверхностном натяжении Полярные молекулы вещества обладают дипольным моментом, то есть разницей в электрическом заряде между атомами и молекулами. Вода является ярким примером полярной жидкости: у нее есть частично положительно заряженный водород и частично отрицательно заряженный кислород.

Это приводит к возникновению внутренних электрических сил, которые удерживают молекулы воды вместе и создают поверхностное натяжение. Полярные жидкости образуют сильные водородные связи между молекулами на поверхности, что делает их поверхность более устойчивой и способной выдерживать внешние воздействия. Этот факт объясняет, почему вода образует выпуклую форму на поверхности и почему насекомые могут ходить по воде благодаря поверхностному натяжению.

Глава 6 Поверхностное натяжение: капли и молекулы

Почему и как зависит поверхностное натяжение от температуры и рода жидкости Поверхностное натяжение зависит от свойств молекул жидкости и внешних условий, таких как температура и давление.
Почему поверхностное натяжение зависит от состава и свойств жидкости Поверхностное натяжение жидкости зависит от нескольких факторов, которые определяют ее свойства и поведение на поверхности.
§ 8-1. Поверхностное натяжение По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление.

Остались вопросы?

Потому что поверхностное натяжение зависит от межмолекулярных взаимодействий жидкости, а оно у всех жидкостей отличается. Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения. Поверхностное натяжение жидкости зависит от нескольких факторов, которые определяют ее свойства и поведение на поверхности.

Почему зависит поверхностное натяжение от рода жидкости

Поверхностное натяжение жидкости зависит от. Причины поверхностного натяжения. Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) – это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости. 1. Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости? Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит.

2.2.3. Факторы, влияющие на величину поверхностного натяжения

Оно влияет на способность проникать активным веществам через клеточные мембраны и эффективность их взаимодействия с организмом. В области материаловедения знание о поверхностном натяжении позволяет подбирать оптимальные материалы для создания различных покрытий и пленок с заданными свойствами. Например, в производстве упаковки, подбор материала с оптимальным поверхностным натяжением помогает предотвратить проникновение влаги и защитить продукты. В текстильной промышленности знание о поверхностном натяжении используется при обработке тканей и создании водоотталкивающих покрытий. При проектировании одежды и спортивного снаряжения учитывается поверхностное натяжение жидкости, чтобы обеспечить комфорт и защиту от воздействия влаги. Также знание о влиянии рода жидкости на поверхностное натяжение применяется в нефтяной и газовой промышленности. При расчете потока жидкостей и газов в трубопроводах учитывается их поверхностное натяжение, что позволяет оптимизировать процессы перекачки и уменьшить энергозатраты. Таким образом, знание о влиянии рода жидкости на поверхностное натяжение является важным элементом в научных и технических исследованиях. Оно помогает разрабатывать новые материалы, оптимизировать процессы и создавать продукты с улучшенными свойствами. Оцените статью.

Известно, что жидкость состоит из молекул, связанных друг с другом. Делектные силы между этими молекулами создают сопротивление изменениям формы жидкости. Деликтные силы направлены внутрь жидкости и противодействуют деформации. Именно эти силы порождают поверхностное натяжение на границе раздела между жидкостью и воздухом. Роль водородных связей в поверхностном натяжении Водородные связи представляют собой электростатическое взаимодействие между атомами водорода, связанными с электроотрицательными атомами, такими как кислород, азот или фтор. В жидкостях, обладающих возможностью образовывать водородные связи, молекулы образуют сеть связей между собой, что приводит к более высокому поверхностному натяжению.

Водородные связи имеют свойства притягивать другие молекулы ко всему будучи притянутыми молекулярному возвышению, что способствует укреплению поверхности жидкости. Это объясняет, почему жидкости, такие как вода и многие органические соединения, обычно имеют более высокое поверхностное натяжение, потому что они образуют больше водородных связей в сравнении с другими жидкостями. Более сильные взаимодействия водородных связей между молекулами создают более прочную поверхность, что приводит к более высоким значениям поверхностного натяжения. На практике это проявляется в способности жидкостей с высоким поверхностным натяжением образовывать капли сферической формы, так как энергия поверхности молекул жидкости минимизируется при минимальном контакте с внешней средой. Таким образом, водородные связи играют важную роль в определении поверхностного натяжения жидкости. Изучение этих связей и их влияния на физические свойства различных жидкостей имеет большое значение в научных и технических областях, таких как фармакология, материаловедение и биохимия. Зависимость поверхностного натяжения от температуры При повышении температуры, поверхностное натяжение жидкости обычно снижается.

Это происходит из-за увеличения теплового движения молекул в жидкости. Более интенсивное движение молекул приводит к увеличению наружных сил, стремящихся расширить поверхность жидкости и уменьшить ее площадь. Температурная зависимость поверхностного натяжения может быть описана законом Гейскирха, который устанавливает, что поверхностное натяжение жидкости обратно пропорционально температуре. Простыми словами, чем выше температура, тем меньше поверхностное натяжение. Зависимость поверхностного натяжения от температуры имеет важные практические применения. Например, в процессах, связанных с плаванием или смачиванием материалов, знание такой зависимости позволяет выбирать оптимальные условия для достижения желаемых результатов. Также, в поверхностно-активных веществах, которые находят широкое применение в бытовой химии или фармацевтике, температура может контролироваться для изменения поверхностного натяжения и достижения определенных свойств продукта.

Оцените статью Вам также может понравиться.

Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости рис. Вода в невесомости Рис. Мыльные пузыри Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды рис. Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади.

Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести. Иголка на поверхности воды Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться рис. Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз. Принцип работы пипетки Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся.

Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

Проявления сил поверхностного натяжения Чтобы убедиться в реальном существовании сил поверхностного натяжения, достаточно провести простые опыты. Поместить мыльную пленку на рамку и увидеть, как она стремится уменьшить свою площадь. Опустить проволочное кольцо в мыльный раствор и подействовать на него силой, чтобы оторвать от поверхности. Таким образом, силовое и энергетическое определения поверхностного натяжения тесно взаимосвязаны между собой и дополняют друг друга. Давайте разберемся, от чего зависит это удивительное свойство. Зависимость поверхностного натяжения от условий Поверхностное натяжение определяется в первую очередь природой самой жидкости и того вещества, с которым она граничит обычно воздух или пар. Это связано с различной силой взаимодействия между молекулами.

Объясняется это ослаблением сил притяжения между молекулами жидкости.

Почему зависит поверхностное натяжение от рода жидкости

§ 8-1. Поверхностное натяжение Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) – это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости.
Капиллярные явления Высота подъема влаги зависит от радиуса капилляра и свойств жидкости, таких как поверхностное натяжение и вязкость.
Почему поверхностное натяжение зависит от рода тем большая сила поверхносного натяжения.
Форум самогонщиков, пивоваров, виноделов Температурная зависимость поверхностного натяжения между жидкой и паровой фазами чистой воды Температурная зависимость поверхностного натяжения бензола Поверхностное натяжение зависит от температуры.

Похожие новости:

Оцените статью
Добавить комментарий