Новости красноярские ученые использовали наноалмазы

По сообщению пресс-службы ФИЦ «Красноярский научный центр СО РАН», новый композиционный материал состоит из нановолокон оксида алюминия и детонационных наноалмазов.

Ученые из Красноярска разработали уникальные наночастицы золота для биомедицины

Красноярские ученые разработали биопластырь Для определения загрязнения используют так называемые детонационные наноалмазы, получаемые при взрыве содержащих углерод взрывчатых веществ (например, смесь тротила и гексогена), в замкнутой камере при недостатке кислорода.
Красноярские ученые научились находить яды в воде с помощью наноалмазов Сотрудники Красноярского института биофизики продемонстрировали, как алмазы можно использовать для выявления фенолов в воде.
Красноярские ученые научились выращивать нанокристаллы с заданной формой Учёные из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов.

Красноярские ученые создали новый нанокомпозитный 2D-материал

Данное свойство предоставляет инженерам возможность создавать на основе таких материалов новые типы дисплеев. Научные сотрудники институтов неорганической химии им. Николаева и биофизики СО РАН смогли прочно увязать вертикально упорядоченные нанотрубки с нанесенными на их поверхность наноалмазами.

Уже сегодня открыты такие формы его существования, как фуллерены, нанотрубки, нановолокна, наноалмазы, графен. Учёные предполагают, что среди прочего их можно применять для адресной доставки лекарств, помещая препараты внутрь наночастиц, или для создания высокочувствительных маркеров, способных обнаруживать серьёзные болезни на ранней стадии. Проекты с применением наноматериалов в медицине и фармакологии пока не выходят за стены лабораторий, так как не до конца поняты механизмы действия этих мельчайших структур.

Одна из часто возникающих проблем -- токсичность наночастиц, закономерности проявления которой не всегда понятны. Из-за такой неопределённости и недостаточной изученности применение углеродных наночастиц затруднено. У исследователей пока нет полной уверенности в безопасности таких медицинских препаратов. Красноярские биофизики предложили применять биолюминесцентные тесты для оценки токсичности и антиоксидантной активности углеродных наночастиц. Учёные проверили этот метод на фуллеренолах -- водорастворимых производных фуллеренов.

Они представляются перспективными для создания антибактериальных, противогрибковых, противовирусных, противораковых средств и компонентов композиционных биоматериалов.

Наш метод лишь помогает традиционным — например, хирургическому удалению опухолей. И уже после этого наши нанодиски начинают искать оставшиеся разрозненные онкоклетки, уничтожать и выводить их. Как выглядят это лечебные наночастицы?

Сколько это? Чтобы представить это — для сравнеиния — человеческий эритроцит, красная клетка крови, имеет размер примерно 6-7 тысяч нанометров.

Главная Новости Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков 20 октября 2017, 14:36 5 565 Наилучшим образом порошки подходят для изготовления ферромагнитных жидкостей и сердечников высокочастотных трансформаторов. Киренского Красноярского научного центра СО РАН научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой.

Порошки с такими частицами могут применяться для изготовления сердечников высокочастотных трансформаторов и ферромагнитных жидкостей, сообщили сегодня в КНЦ СО РАН. Вначале вещество переводится в плазменное состояние. При охлаждении углерод растворяется в никелевых кластерах, которые слипаются коагулируют до образования частиц.

В Красноярске создали композит, который светится в магнитном поле

В целом технологии очисти белков, основанные на применении наноалмазов, отличает быстрота, простота и эффективность. А также в клинической медицине — ведь чистота лекарственного препарата имеет принципиальное значение: когда препарат содержит примеси, могут возникать побочные эффекты. Приведу пример из нашей практики. Несколько лет назад мы сотрудничали с коллегами из Института биоорганической химии ИБХ РАН, Москва , в котором было организовано опытное биотехнологическое производство рекомбинантного инсулина. Это крайне востребованный гормон пептидной природы, применяемый для лечения сахарного диабета. Коллеги предоставили нам два финальных препарата инсулина, в которых мы нашли загрязняющую примесь.

С помощью наноалмазов удалили эту примесь и получили оба препарата в чистом виде. К сожалению, дальнейшего развития это направление совместных исследований не получило. Хотя нам было бы интересно получить с помощью наноалмазов высокоочищенный инсулин сразу из экстрактов биомассы бактерий-продуцентов. Если бы это удалось, мы бы смогли повысить эффективность процесса выделения этого ценного целевого продукта, сократить время и затраты на его производство. Также на основе наноалмазов мы научились конструировать системы биохимической диагностики.

Создали три системы, с помощью которых можно определять физиологически важные вещества, например, в крови человека — мочевину, глюкозу и холестерин. В перспективе эти тест-системы могли бы найти применение в медицинской диагностике, мы экспериментально продемонстрировали такую возможность. Отмечу, что мне как учёному прежде всего нужно доказать самому себе состоятельность идеи, проверив её экспериментально, и на основании полученных данных определить границы возможного практического применения. Но с позиции определённого опыта считаю, что в этой жизни, используя военную терминологию, у каждого из нас есть свой окоп. Если человек профессионально занимается своим делом в своём окопе, боевые действия успешны.

Если начинает метаться между окопами, дело потерпит фиаско. Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике.

Это абсолютно правильный путь — все практические достижения человечества основаны на фундаментальных знаниях и их анализе. К сожалению, сегодня у нас норовят «поставить телегу впереди лошади». И часто задают преждевременный вопрос: где вы собираетесь это использовать? Опережая события, хотят сразу видеть практическую реализацию. Но даже при наличии обоснованности практического применения реализовать научную разработку непросто.

Приведу пример из нашего опыта. Несколько лет мы пытались «пробить» практическое применение наноалмазов. В частности, их использование в качестве присадок к автомаслам и консистентным смазкам. Мы собрали кипу экспертных заключений с положительными отзывами из целого ряда крупных предприятий. Но осуществить практическое использование так и не смогли.

Конечно, можно переквалифицироваться, но зачем? Когда мы занимаемся несвойственным себе делом, страдает то, чем мы должны заниматься. И при этом, к сожалению, дело никого не интересует в достаточной мере. Досадно, что сейчас между словами и реализацией получается слишком большой промежуток, оттого и практическое внедрение научных разработок существенно хромает. Мне посчастливилось застать времена, когда была бОльшая стабильность в этих вопросах.

Когда ты мог планомерно трудиться, не отвлекаясь на посторонние дела, и ощущал значимость того, что делаешь. Сегодня нужна разумная кооперация между учёными, которые получают результаты, пригодные для практического использования, и специалистами, которые отвечают за вопросы их внедрения в практику и умеют это делать.

Для этого они объединили два известных ранее нетоксичных и простых химических процесса. Полученные продукты могут использоваться в медицине, ветеринарии, косметической и пищевой промышленности. Результаты исследования опубликованы в журнале Wood Science and Technology. Древесина содержит большое количество ценных химических веществ, например, целлюлозу, лигнин, ксилоолигосахариды.

Поэтому древесные отходы, такие как опилки, могут перерабатываться и использоваться в медицине, косметологии, пищевой промышленности и других областях. Однако для этого необходимо разработать и подобрать эффективные, но при этом нетоксичные методы превращения древесины в полезные компоненты.

Как пояснила ученый, пациенту просто надо будет делать укол с лекарством, в котором доработанные наночастицы. Таким образом, они и будут заниматься всей работой как доктора.

Данный метод призван помочь в заживлении ран, хрящей и костей.

Николаева и биофизики СО РАН смогли прочно увязать вертикально упорядоченные нанотрубки с нанесенными на их поверхность наноалмазами. Таким образом был получен композит с уникальными свойствами: под воздействием даже слабого электрического поля он может светиться люминесцентным голубым светом. Эксперты говорят, что раньше подобные материалы светились только под действием сильного магнитного поля.

Красноярские ученые создали материал из наноалмазов и нанотрубок

Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля». Материал разработан на основе наноалмазов и углеродных нанотрубок — возможно применение при создании дисплеев современного типа. Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. Красноярские ученые вместе со специалистами НПП "Радиосвязь" холдинга "Росэлектроника" (входит в Ростех) разработали метод быстрого сращивания костей с помощью доработанных наночастиц, а также слабых магнитных полей.

Красноярские учёные изобрели магнитные нанодиски для борьбы с онкологией

Ученые из Красноярска создали материал из наноалмазов и нанотрубок Ученые из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов.
Красноярские ученые разработали биопластырь » Запад24 7 канал Красноярск. Подписаться.
В Сибири разработали композит для обнаружения токсичных веществ в воде Учеными красноярского института биофизики и новосибирского института неорганической химии Сибирского отделения РАН получен композитный материал на основе наноалмазов и углеродных нанотрубок.
Красноярские учёные разработали уникальный способ анализа воды - Столица 24 Главный телеканал Красноярского края, рассказываем о последних новостях Красноярска и районов края.
В Сибири разработали композит для обнаружения токсичных веществ в воде | ИА Красная Весна JRSNZ: ученые открыли новый вид ископаемых дельфинов — Aureia rerehua.

Красноярские ученые научились выращивать нанокристаллы с заданной формой

Внедрение биополимерных повязок запланировано в лечебно-профилактических учреждениях после проведения всех необходимых исследований, а также получения государственной регистрации. Нашли ошибку? Комментировать статьи на сайте возможно только в течении 90 дней со дня публикации.

Коллектив ученых из Красноярского научного центра Сибирского отделения РАН СО РАН и Сибирского федерального университета разработал недорогой, простой в производстве и использовании композитный материал для обнаружения фенола в промышленных сточных водах. Он состоит из нановолокон оксида алюминия и детонационных наноалмазов. Такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон — более высокая термическая и механическая стабильность, повышенная химическая и биологическая стойкость, простота очистки и более длительный срок службы.

Наночастицы благородных металлов уже давно применяются в противораковой терапии. Медицинские специалисты используют оптическое излучение для нагрева наночастиц. При таких условиях происходит избирательная гибель опухолевых клеток. Однако такое поглощаемое обычными наночастицами излучение видимого диапазона длин волн попадает в полосу поглощения тканей, наполненных кровью, что резко снижает глубину проникновения света в ткани человека.

Композиционный материал имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон. Специалисты отмечают, что такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон. Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы. В результате деятельности многих отраслей промышленности в поверхностные водоемы попадает большое количество химических соединений, практически неразлагаемых в природе и являющихся токсичными.

Одно из таких — фенол и его производные. В связи с этим существует необходимость в мониторинге уровня загрязнения промышленных сточных вод, позволяющего легко и эффективно проводить анализ воды «на месте». Это помогало бы экологическим службам и общественному контролю быстрее оценивать экологическое состояние природных вод. Процедура колориметрического анализа воды на содержание фенола с использованием полученного нами композита происходит следующим образом.

Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков

Сотрудники Красноярского института биофизики продемонстрировали, как алмазы можно использовать для выявления фенолов в воде. Вещество красноярских ученых способно светиться. Как сообщалось, ранее красноярские ученые совместно с канадскими коллегами разработали способ адресного разрушения раковых клеток с помощью модифицированных аптамерами наночастиц золота и теплового воздействия, вызванного лазерным излучением. Домой Новости Ученые использовали наноалмазы для обнаружения загрязнений в воде. Ученые из Красноярского научного центра Сибирского отделения РАН предложили способ обнаружения фенолов в воде с помощью наноалмазов.

Новосибирские ученые скрестили алмаз и графен для получения нового материала

Он состоит из нановолокон оксида алюминия и детонационных наноалмазов. Композиционный материал имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон. Специалисты отмечают, что такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон. Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы. В результате деятельности многих отраслей промышленности в поверхностные водоемы попадает большое количество химических соединений, практически неразлагаемых в природе и являющихся токсичными. Одно из таких — фенол и его производные. В связи с этим существует необходимость в мониторинге уровня загрязнения промышленных сточных вод, позволяющего легко и эффективно проводить анализ воды «на месте». Это помогало бы экологическим службам и общественному контролю быстрее оценивать экологическое состояние природных вод.

Учредитель: федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор: Лепухов Д. Электронная почта редакции сетевого издания: web kgtrk.

Любое использование текстовых, фото-, аудио- и видеоматериалов возможно только с согласия правообладателя ВГТРК. Политика конфиденциальности Информация о разработчике сайта.

В середине 80-х Евгений Ваганов и Александр Шашкин предложили модель роста деревьев — она описывает рост годичных колец деревьев в зависимости от разных факторов внешней среды. Сегодня модель используется для этих целей во всем мире. Материалы по теме «Тепло, пожары и насекомые»: каким будет климат Сибири через 100 лет Что происходит с погодой? Исследования в области дендрохронологии продолжаются — ученые Сибирского федерального университета на основе модели Ваганова-Шашкина научились делать прогнозы о состоянии лесов в зависимости от изменения климата в долгосрочной перспективе. Стоит отметить, что проблема реакции деревьев на возможные климатические изменения — одна из главных в современной лесной экологии. Несмотря на значительное количество исследований, четкого ответа на то, как будет реагировать древесная растительность в естественных условиях на эти изменения среды при разном составе древостоев в разных физико-географических зонах, до сих пор не было. Сейчас ученые подтвердили гипотезу о том, что в холодных и засушливых условиях главную роль в формировании ксилемы ткани, составляющей основную полезную биомассу древесины играет влажность почвы. А вот начало и конец периода годичного роста определяется температурой окружающей среды.

Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков

Наука Вещества 29.10.2021, 19:35 Многоразовый композит из нановолокон и наноалмазов поможет выявить токсины в воде Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов. Наноалмазы представляют собой серый порошок, который получают при серии коротких взрывов углерода. Следовательно, наноалмазы можно использовать для нейтрализации, например, микотоксинов — метаболитов низших грибов, в частности плесневых. По сообщению пресс-службы ФИЦ «Красноярский научный центр СО РАН», новый композиционный материал состоит из нановолокон оксида алюминия и детонационных наноалмазов. Группа ученых из Красноярского научного центра СО РАН, Туниса, Индии и Саудовской Аравии синтезировали кристаллы на основе органики и азотной кислоты.

Красноярские ученые создали новый нанокомпозитный 2D-материал

Красноярские ученые предлагают проверять воду на яд наноалмазами - Российские ученые создали реактор, перерабатывающий отходы в экологичное топливо 16+.
Красноярские ученые научились находить яды в воде с помощью наноалмазов - Вести. Красноярск Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде.
В Красноярске создали композит, который светится в магнитном поле Красноярские ученые придумали новый способ лечения онкологических заболеваний с использованием наночастиц золота, сообщает ТАСС.
Новосибирские ученые скрестили алмаз и графен для получения нового материала - Вести и электро- катализе, а также использовать в литиевых, магниевых, алюминиевых.

Ученые из Красноярска разработали уникальные наночастицы золота для биомедицины

Город - 14 марта 2018 - Новости Красноярска - Новосибирские физики разработали новый материал наноалмазы, встроенные в графен, природных и искусственных аналогов ему нет, утверждают исследователи. Российские ученые создали реактор, перерабатывающий отходы в экологичное топливо 16+. Красноярские ученные придумали устройство для создания искусственной вечной мерзлоты, сообщает информационное агентство «Арктик-Инфо». Красноярские ученые вместе со специалистами НПП "Радиосвязь" холдинга "Росэлектроника" (входит в Ростех) разработали метод быстрого сращивания костей с помощью доработанных наночастиц, а также слабых магнитных полей. Ранее ученые ИГМ СО РАН работали с давлением, соответствующим глубине 200 км, напоминает Интерфакс.

Покрытые крахмалом магнитные наночастицы помогут в очистке биомедицинских молекул

Наноалмазы чуть дороже, там другая технология, их изготавливают взрывным, детонационным способом в камере. Вещество красноярских ученых способно светиться. Учёные СО РАН выявили способ определения загрязнения воды с помощью наноалмазов. JRSNZ: ученые открыли новый вид ископаемых дельфинов — Aureia rerehua.

Похожие новости:

Оцените статью
Добавить комментарий