Новости светодиодная подсветка для телевизора

Подсветка с прямым освещением: в светодиодном экране с прямым освещением светодиоды находятся прямо за экраном и светят через ряд отверстий или отверстий в экране.

Смарт-подсветка для любого телевизора (14 фото + видео)

В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и т.д. Лучшие светодиодные ленты 2024 года. КП и эксперт Анна Васютина представляют рейтинг светодиодных лент, которые представлены на рынке в 2024 году с фото, плюсами и минусами товаров и советами по выбору. Продажа светодиодных LED подсветок с доставкой. Отличные цены на светодиодную LED подсветку. На сегодняшний день большинство телевизоров работают по технологии светодиодной подсветки экрана. USB cветодиодная LED лента подсветка для телевизора и монитора 1 м, IP65, 5050 Зеленая.

QLED в телевизоре: все, что нужно знать

QLED телевизоры отличаются типом подсветки и конечный результат в качестве изображения зависит именно от неё. Узнать сколько стоит LED подсветка для телевизоров на сайте Узнать сколько стоит LED подсветка для телевизоров на сайте Фоновая светодиодная подсветка для любого телевизора ColorRGB LED TV Backlight. QLED телевизоры отличаются типом подсветки и конечный результат в качестве изображения зависит именно от неё. Edge LED и Direct LED – два варианта светодиодной подсветки для жидкокристаллических экранов телевизоров и мониторов.

7 лучших комплектов подсветки телевизора для приятного фонового освещения

Обязательно соблюдаем полярность. Подключаться подсветка будет от USB разъёма телевизора, но там только 5V и этого нам недостаточно. Для работы LED ленты обычно нужно 12 или 24V. Поэтому используем повышающий напряжение модуль MT3608 он повысит напряжение с 5 до 12V.

Никаких лишних телодвижений. На всё про всё, не торопясь, ушло около часа, включая уборку рабочего места и инструмента. Немного «погонял» самоделку — диоды практически не нагрелись, пальцем не ощутить. Есть сомнения насчет надежности комплектного скотча, не знаю как он?

При необходимости, думаю несложно будет заменить на что-то покрепче имею в виду хороший скотч. Ну вот, как-то так. Всем удачи.

Ещё нужен качественный 5-метровый usb кабель, у меня такой совершенно случайно валялся уже много лет. Все провода дополнительно приделываются пластиковыми хомутами, кое-где фиксируются армированным скотчем, чтобы не болтались. В процессе отладки выяснился нюанс, о котором никто не удосужился написать ранее в статьях.

Если брать ленту, в которой контроллеры будут встроены прямо в светодиоды, то каждый диод будет адресуем. А если взять ленту как у меня, то адресуются только кусками по 5 см! Три диода с точки зрения софта — это один! Потратил часа полтора наверное, пока понял, в чём подвох. В итоге получилось не 168 "диодов", а 56, после указания верного количества всё заработало.

Производитель утверждает, что такой сетап предназначен для обеспечения «настоящего 4D-эффекта», который расширяет контент за пределы телевизора. Настроить степень свечения и нужный режим можно в фирменном приложении Nanoleaf. Более того, новинка совместима с Apple HomeKit, что позволяет интегрировать её в существующую систему умного дома.

Как сделать подсветку Ambilight для проекционного экрана?

Светодиодная лента для подсветки клеится сзади телевизора по всему периметру. Преимущество жидкокристаллического телевизора — светодиодная подсветка, есть у всех LED моделей. В живую телевизоры с встроенной подсветкой не пробовал, поэтому сравнить заводской амбилайт и амбилайт с амазона могут обладатели телевизоров Phillips в комментариях.

Динамическая подсветка для любого телевизора

Как мы видим разные цвета? Например, жёлтый? Жёлтый — это 570 нм. Значит, думай, что это жёлтый». Хотя, в реальности, это может быть и не жёлтый, а обманка в виде того самого зелёного и красного, которую излучил дисплей. Да, ваш дисплей если это не Sharp особой серии настоящий жёлтый цвет показать не сможет, всё это обман.

Некоторые живые существа, кстати, вполне могут это заметить. Здесь должна быть маленькая формула с интегралом, но, к несчастью для интегралов, они очень пугают большинство людей. Объясню словами. Сенсор не детектирует какую-то одну длину волны, а суммирует амплитуды яркость всех обнаруженных длинн волн. Но не просто суммирует.

Перед этим суммированием всего-всего, он домножает яркость каждой длины волны на свою сенсора способность видеть эту длину волны, то есть свою чувствительность к этой длине волны. Пример с зелёным сенсором. Посветим на него одновременно несколькими длинами волн: 450 нм, 500 нм, 550 нм и 600 нм. Каждая волна будет иметь условную яркость в 1 единицу. Посмотрите на график, и увидите, какая у него чувствительность к этим длинам волн.

Как он будет действовать? Яркость волны длиной 450 нм, равную 1 он умножит на 0,1 Яркость волны длиной 500 нм, равную 1, он умножит на 0,4 Яркость волны длиной 550 нм, равную 1, он умножит на 1,2 Яркость волны длиной 600 нм, равную 1, он умножит на 0,4 А потом всё это сложит. Получится 2,1. И он отправит значение 2,1 в зрительный нерв на самом деле не сразу, в сетчатке есть своя мини-нервная система, выполняющая предварительную обработку информации, но это не важно. Пример двух спектров, которые на химическом и физическом уровне абсолютно разные, но для сенсора — то же самое Теперь убираем все эти четыре длины волны, и, вместо этого, светим одной в 525 нм и яркостью 2,1.

Сенсор снова сделает это умножение-сложение, и у него снова получится 2,1. То же самое. Поэтому, с информационной точки зрения, для сенсора два этих воздействия — абсолютно одно и то же. Сенсор выдаёт только интенсивность, просто циферку — и мозг, как-бы, будет видеть одно и то же. Только вот сенсор живой и электрохимический.

Он требует обслуживания, заботы и управления, надо подкачивать разные нужные вещества и калибровать всякие биологические штуки. Кислород с витаминками, и всё такое. Не одно и то же всё время, а по ситуации: от воздействия света разной интенсивности и длины волны в палочках и колбочках возникают разные фотохимические реакции, и баланс веществ в них постоянно меняется. Чтобы грамотно рассчитать калибровку нервных окончаний и дозу веществ и витаминок в нужный момент времени, организм должен понять, какое на этот сенсор идет воздействие со стороны внешней среды, и на основе этого сделать нужные организменные штуки с этим сенсором. Адаптировать его к ситуации.

А какое воздействие на глаз может быть со стороны внешней среды? Если не брать во внимание нештатные сценарии шлицевая отвёртка , то это могут быть только электромагнитные волны разной частоты длины волны. Очень условный гипотетический! Организм начеку — как только эта длина волны появилась, надо усилить подкачку новых молекул этого витамина, чтобы концентрация не снижалась. Но сенсор даёт очень скудную информацию — лишь одно число, и по нему непонятно, что там происходит.

Вдруг там 458 нм, или 461 нм? Сенсор всё равно выдавал бы одно и то же. А может там вообще только 500 нм? Тогда, если мы ложно испугаемся и ошибочно начнем пихать туда новые дополнительные витаминки, их там будет, наоборот, переизбыток — а это тоже нехорошо. То есть, на информационном уровне, сенсор детектирует зелёный цвет и всё, а на физиологическом уровне на него разные длины волн в спектре действуют по разному, просто он об этом доложить организму не может.

Как же узнать, что витаминки действительно уничтожаются и их пора подкачивать? Поставить спектрограф? Природа их делать не умеет. Датчик на каждое вещество и каждый чих в каждый сенсор — глаза будут размером с арбузы и очень мясные, придётся уменьшить мозг и качать шею. Но можно сделать проще — ориентироваться на среднюю температуру по больнице.

Природа любит так делать. Для того, чтобы полностью оценить это воздействие, и, в частности, узнать, как сильно светит волна 459 нм, нужно знать весь спектр, а не одну циферку с сенсора. За неимением спектрографа, организм, руководствуясь генетическим опытом, выработанным в ходе эволюции нашего вида, выдумывает наиболее вероятный спектр, который бы воздействовал на сенсор так, чтобы получился как раз тот сигнал-циферка, которая с этого сенсора и поступает в данный момент. То есть он пытается выдумать такой спектр, при котором бы сенсоры выдавали то, что они выдают в данный момент. Поскольку он знает только естественный спектр и его формы, то выдумывает именно естественный спектр.

И, поскольку сенсор не один, а четыре, очень грубую картину спектра организм таки восстанавливает. Естественный для нашего организма спектр — это довольно плавная штука: Естественный спектр Плавный он по простой причине. Что видел глаз всю эволюцию? Листики с травинками, камешки, небо с речками, волосня товарища по пальме, вот это всё. Большое разнообразие химических элементов, одним словом.

И почти для каждой длины волны найдется какая-нибудь молекула, хорошо отражающая именно её. И получается, что когда веществ много разных, то отражаются почти все волны, и спектр этих отражённых волн плавный. А что значит «плавный спектр»? График плавный. Например, яркости 480 нм много — значит, скорее всего, и 479 нм, и 475 нм, и 485 нм тоже довольно много.

Физиология глаза заточилась под эту вездесущую плавность — потому что это всегда срабатывало. Работает — не трогай. Все, у кого глаз подстраивался неправильно, плохо видели и были заклёваны саблезубыми мамонтами, не дав потомства. Но потом появились искусственные источники света. Их спектр бывает очень разный.

В большинстве случаев, он очень сильно отличается от естественного спектра, под который эволюционно заточена автонастройка наших глаз. Спектры разных искусственных источников света Например, производители отчаянно воюют со светодиодами, которые очень любят длину волны в районе 430 нм и шпарят ей, как прожекторы, а в природе такого не бывает, там если 430 нм шпарит — то 420 нм и 440 нм тоже будут шпарить. И вот светодиод, у которого 430 нм светит ярко, а в окрестности нет, светит в глаз. Организм думает, что раз синий датчик выдаёт что-то интенсивное, значит 420 нм, и 430 нм, и 440 нм много, и начинает на физиологическом уровне подстраиваться под этот спектр. Подкачивает не те вещества, не в той концентрации и невпопад, генерирует неверные стимулы всяких нейронов, неправильно калибрует чувствительность.

В глазах нарушается баланс нужных веществ и электрохимических регулировок, и глаза начинают вполне справедливо докладывать о сбоях. Эти сбои наше сознание интерпретирует как неестественность картинки и усталость глаз. Словом, не для того у нас эти две штуки в голове выросли. Неестественный спектр создаёт ощущение неестественности цвета. Сенсоры передают в мозг нужную информацию, на информационном уровне всё нормально — картинка как картинка, но авторегулировка физиологии глаза отрабатывает неадекватно ситуации, потому что неправильно рассчитывает предположение о том спектре, который светит в глаз.

Если же спектр естественный — то представление организма о спектре и его реакции адекватны реальному воздействию на сетчатку — и цвета кажутся мягкими. Потому что с физиологией всё хорошо. Спектр решает, будут цвета ощущаться мягкими и естественными, или нет. Давайте делать дисплей. Светоизлучающих элементов, способных выдавать любую видимую длину волны, пока не сделали.

А жаль. Поэтому делаем просто — под каждый сенсор в нашем глазу свой элемент на дисплее. Красному — 700 нм, зелёному — 550 нм, синему — 450 нм. Будем этими элементами дисплея стимулировать сенсоры глаз так же, как это делают цвета, и обманем глаз, чтобы он думал, что видит цвет. В длинах волн и частотах видимого спектра стоит коварный капкан для мозга.

Случайно или нет? Длины волн видимого спектра - от 380 до 780 нм, а частоты - от 380 ТГц до 790 ТГц. Например, у оранжевого частота 500 ТГц, а у бирюзового - длина волны 500 нм. Частота и длина волны - это, как-бы, взаимно обратные величины, и вот такой вот нюанс с почти одинаковыми цифрами может сильно путать мозг Резюмируем. У нас в дисплее три источника света: красный, зелёный и синий.

Когда они будут светить одновременно — мы будем стимулировать сразу три сенсора в глазу — и будет белый. Вот только этот белый — какой у него будет спектр? Если этот спектр будет неестественным, то от такого дисплея устанут глаза. А если наоборот, спектр получится более естественным — картинка будет выглядеть мягкой и глаза не будут уставать. И так не только с белым, а вообще со всеми цветами.

В этом вся соль. К слову, в ныне вымерших плазменных телевизорах, особенно последних моделей, дела со спектром обстояли очень и очень хорошо. Поэтому у многих из них картинка выглядит, местами естественнее, чем на OLED, если не брать в расчёт моральное устаревание и связанные с этим аспекты. Свет от Солнца до Земли летит миллионы лет А как же отражённый свет? Да никак.

Фотоны не бывают «отражённые» и «прямые». Если хочется, можно даже сказать, что все фотоны вокруг нас — отраженные. Даже с Солнца. Почему же на лампочку и солнце смотреть больно, а на объекты, освещенные ими нет? Ну ясно-понятно, это же прямой свет, а не отражённый.

Не по этому. Когда солнце или лампочка проецируется на сетчатку глаза, то на сравнительно маленькой площади сетчатки появляется слишком много яркого света. Источник света же точечный. Вот он в виде этой точки и проецируется. Если натянуть на лампочку большой трёхметровый светорассеиватель, то на него вполне комфортно будет смотреть.

И наоборот, если осветить комнату мощным военным прожектором и посмотреть на мебель в этом «безвредном» отражённом свете, то это может оказаться последним, что вы увидите. Потому что смысл в яркости, а не в том, откуда свет. Точнее, концентрации яркости на условном кусочке сетчатки глаза. Лазеров это тоже касается — сами по себе, они не вредные. Просто у лазеров спектр очень-очень далёк от естественного, и лазером гораздо легче получить концентрированную яркость на маленьком участке сетчатки.

Лазер мы встречаем в жизни чаще, чем сверхмощные военные прожекторы по крайней мере, пока что , поэтому проблема попадания лазера в глаз встречается чаще. Сенсоры сетчатки могут перегрузиться и сгореть, поэтому сигнализируют об этом, если успеют. Вот поэтому нам неприятно смотреть те штуки, которые перегружают их. Давайте посмотрим на фотоны поближе и изучим их повадки. Не будем заострять внимание на том, что мир для них двумерный, времени не существует, и они вообще не «летят» — лучше обратим внимание на то, как они отражаются.

Когда свет летит через плазму или газ — фотоны не летят через него. Вместо этого, атомы газа постоянно поглощают и переизлучают фотоны заново. Как по цепочке. Долетают не «те самые» фотоны, а «новые» физики, держитесь. На постоянное поглощение-переизлучение уходит время, именно поэтому свет в веществе замедляется.

Точно также, когда фотоны «отражаются от поверхности» — на самом деле они поглощаются, и переизлучаются новые. Большая часть фотонов, прилетающих с Солнца на Землю, рождаются у него в сердце, и миллионы лет скитаются в толще его плазмы, переизлучаясь-отражаясь огромное число раз, прежде, чем вырваться на волю и долететь до нас за те самые 8 минут. А с книжкой то что? А почему же книжку легче читать, чем дисплей? Да потому, что отражение есть переизлучение, а переизлучение немного меняет спектр.

Одни частоты отражаются лучше, другие хуже. И это, как правило, постепенно приближает спектр к естественному. Причём, если после изменения спектра соотношение между сигналами красной, зелёной и синей колбочки не поменяется - то визуально цвет остаётся таким же. Однако, спектр света, отражённого от книжки может стать спокойнее и ближе к естественному. Причина приятности E-Ink состоит в естественном спектре и правильной яркости Книжка состоит из целлюлозы — того вещества, которое окружало нас миллионы лет эволюции, и под наблюдение которого эволюционно заточились сенсоры в наших глазах.

Нашим глазам приятнее воспринимать те волны, которые целлюлоза отражает лучше, и менее приятно воспринимать те волны, которые целлюлоза отражает хуже. Поэтому для глаз эта спектральная книжковость естественна и приятна. Большинство объектов вокруг нас тоже чуть-чуть выправляет спектр ближе к естественному. В том числе и полимеры, в том числе краска и пластик - часть волн гасят, часть высокочастотных волн размазывают, если имеет место люминесценция.

Звучит как Ambilight от Philips, но, будучи отдельным девайсом, имеет свои отличия. Во-первых, у Lightpack 2 есть коммутатор Lightbridge, который служит хабом для HDMI-устройств: лента подключается к Lightbridge, он — к телевизору, а уже к нему через четыре HDMI-входа подключаются непосредственно источники. Во-вторых, в комплекте с девайсом можно заказать «пиксели» — маленькие фонарики, которые своим мерцанием усиливают, как считают в компании, процесс «погружения» при просмотре. В-третьих, Lightpack 2 работает как с телевизорами, так и с мониторами предыдущая версия, Lightpack без индекса, была разработана исключительно для компьютеров , и для начала работы ее требуется просто включить в розетку. В-четвертых, новинку можно использовать в качестве уютной лампы, настраивая освещение с помощью приложения для мобильных устройств при выключенном телевизоре.

Nanoleaf 4D Screen Mirroring Lightstrip Kit обеспечивает подсветку телевизора или монитора в соответствии с содержимым на экране. Комплект состоит из светодиодной ленты Nanoleaf Lightstrip, которая крепится к задней части телевизора, а камера должна быть направлена на экран для определения цветов. Производитель утверждает, что такой сетап предназначен для обеспечения «настоящего 4D-эффекта», который расширяет контент за пределы телевизора.

Новый алгоритм VASA-1 от Microsoft, вероятно, сумеет удивить многих, поскольку для его работы вообще не нужно описание. Достаточно предоставить одно изображение ч... По словам авторов разработки, они черпали вдохновение у природы, а именно у растений. Читать дальше Мошенники нашли новый способ воровства Телеграм-аккаунтов Компания F.

Выберите город

  • какая подсветка в телевизорах лучше и долговечней
  • Что такое Dual LED в телевизорах Samsung: вот что вы должны знать |
  • Как сделать подсветку Ambilight для проекционного экрана?
  • Что лучше в телевизоре - Direct Led или Edge Led подсветка
  • Подсветка для TV своими руками
  • Поговорим о коде

Подсветка телевизора в стиле "Ambilight"

Подсветка сама включается и выключается вместе с тв или apple tv. Интересно реализован работа режима Музыка - там динамическая подсветка анализирует не цвета на экране, а частоты музыки - верхние, средние и басы и все это можно настраивать по своему усмотрению. Видеообзор DreamScreen 4K:.

LED подсветка матрицы светодиодами, сейчас таких телевизоров большинство. Раньше для освещения матрицы использовались лампы.

Обязательно соблюдаем полярность. Подключаться подсветка будет от USB разъёма телевизора, но там только 5V и этого нам недостаточно. Для работы LED ленты обычно нужно 12 или 24V.

Поэтому используем повышающий напряжение модуль MT3608 он повысит напряжение с 5 до 12V.

Во-первых, у Lightpack 2 есть коммутатор Lightbridge, который служит хабом для HDMI-устройств: лента подключается к Lightbridge, он — к телевизору, а уже к нему через четыре HDMI-входа подключаются непосредственно источники. Во-вторых, в комплекте с девайсом можно заказать «пиксели» — маленькие фонарики, которые своим мерцанием усиливают, как считают в компании, процесс «погружения» при просмотре. В-третьих, Lightpack 2 работает как с телевизорами, так и с мониторами предыдущая версия, Lightpack без индекса, была разработана исключительно для компьютеров , и для начала работы ее требуется просто включить в розетку. В-четвертых, новинку можно использовать в качестве уютной лампы, настраивая освещение с помощью приложения для мобильных устройств при выключенном телевизоре. К комплекту прилагаются устройства SmartCorners, которые, как видно из названия, крепятся по углам и позволяют девайсу определить диагональ экрана.

Способы LED подсветки

  • Самодельная фоновая подсветка телевизора от USB с регулировкой яркости | Пикабу
  • Какие достоинства у LED-телевизора
  • Что лучше – Direct LED или Edge LED
  • Вы добавили этот товар в корзину
  • Купить подсветка для телевизоров — цены на светодиодную подсветку для ТВ в интернет-магазине CHIP
  • Типы, виды и недостатки LED-подсветки экранов

Сравнительный тест 6 жидкокристаллических телевизоров со светодиодной подсветкой

LED подсветка матрицы светодиодами, сейчас таких телевизоров большинство. Раньше для освещения матрицы использовались лампы.

На это место помещают такую же деталь, получаемую из новой линейки. Все, что останется — восстановить дорожки, то есть подпаять в разрыв пару коротких проводников. Как снять линзу Главное, не повредить ножки линзы. Так ее проще будет устанавливать на место. Операция проводится очень аккуратно. На фене устанавливается температура 100-120 градусов, выхлоп направляется на ленту подложки снизу. Расстояние подбирается эмпирически, обычно около 10 см.

Под линзу помещают тонкую полоску пластика и легонько пытаются, как рычагом, ее поднять. Как только фен расправит клей, деталь отделится от подложки. В ходе работы рекомендуется записывать, откуда что снимается, чтобы затем сделать обратную правильную установку. Как снять диод Диоды также прогреваются феном. Температуру воздуха при этом устанавливают на уровне 320-350 градусов. Понять, что диод отделился, можно по расплавлению припоя по его краям. Деталь снимают пинцетом. Как готовить посадочную площадку После снятия старого диода, под новый готовят место.

То есть удаляют лишнее олово на проводящих площадках, избавляются от потекшего флюса, все вычищают. Затем контактные точки лудят. Как установить новый диод Новый диод очень аккуратно пинцетом устанавливают на подготовленную площадку. Не смещая деталь и не перемещая ленту подложки, последнюю греют снизу феном. Как только будет видно расплав олова, поступление тепла прекращают. После остывания металла на контактных площадках диод готов к работе. Возвращаем линзы на места До окончания монтажа осталась одна операция. Делать ее нужно быстро.

Возврат линз на свои места производится по записанной карте демонтажа. На ножки детали наносят суперклей. Желательно использовать гель, так как он медленнее застывает. Ножки помещают в те же точки, при этом следят, чтобы оптическая ось линзы прошла через центр полупроводникового кристалла. Если поставить все линзы быстро, клей не успеет застыть. Это дает возможность сделать проверку и, при необходимости, корректировки. Для этого подсветку подключают к драйверу и кладут сверху пластину светорассеивающего фильтра. Если она равномерно освещена, ничего делать не нужно.

Производитель утверждает, что такой сетап предназначен для обеспечения «настоящего 4D-эффекта», который расширяет контент за пределы телевизора. Настроить степень свечения и нужный режим можно в фирменном приложении Nanoleaf. Более того, новинка совместима с Apple HomeKit, что позволяет интегрировать её в существующую систему умного дома.

OLED Данный тип подсветки считается наиболее современным.

Эта технология предполагает свечение и самоизлучение диодов. В данном случае каждая ячейка является самостоятельным источником света. Поэтому телевизор не требует подсветки. Это ключевое отличие OLED.

Свечение органических светодиодов во всех пикселях матрицы обеспечивает превосходный уровень затемнения и света. В телевизорах с этим типом подсветки не предусмотрены ЖК-экраны над массивами диодов. За счет этой особенности производители могут создавать ультратонкие 4К телевизоры. Угол обзора в OLED-дисплеях можно назвать совершенным.

Качество картинки не ухудшается при просмотре с любой стороны.

Комментарии

  • Nanoleaf представила 4D-подсветку для телевизора в стиле Ambilight
  • Преимущества и недостатки led-подсветки
  • Моя первая покупка: светодиодная подсветка для телевизора
  • Подсветка экрана телевизора и монитора: как работает

Edge LED против Direct LED – какая светодиодная подсветка лучше для ЖК-экрана

Сначала телевизоры со светодиодной подсветкой использовались для освещения ячеек ЖК-матрицы «полной матрицы» светодиодов по аналогии со стандартными телевизорами, основанными на подсветке лампами CCFL. Но чтобы изменить толщину телевизоров в сторону меньшего размера, разработчики отказались от использования полного массива светодиодов на задней части экрана, установив линейку источников света сбоку от ЖК-панели. Таким образом, распределение света от светодиодных источников по всей площади экрана осуществляется с помощью светодиодов специальной формы. Эти модели ЖК-телевизоров называются телевизорами с боковой или боковой светодиодной подсветкой, которые сегодня доминируют. Светодиодная подсветка с локальной системой затемнения позволяет автоматически затемнять или полностью отключать отдельные группы источников подсветки. При использовании локального затемнения некоторые области общего массива светодиодов подсветки становятся темнее или светлее в зависимости от яркости и цвета соответствующей части изображения на экране. Возможность затемнить определенную область экрана может уменьшить количество света, проходящего через закрытые пиксели ЖК-панели, что положительно сказывается на воспроизведении черного цвета, который становится темнее и реалистичнее. Поскольку уровни черного имеют решающее значение для контраста, восприятия глубины черных поверхностей, цветное изображение становится более выразительным и резким.

У технологии локального затемнения есть только один недостаток: эффект локальной дымки, которая образуется, когда часть света из более ярких областей проникает в соседние более темные, которые впоследствии осветляют темный цвет на границе. Со стандартной подсветкой CCFL и большинством ЖК-телевизоров с боковой светодиодной подсветкой все источники подсветки одновременно включаются или тускнеют так называемое глобальное затемнение , но телевизоры Samsung и LG редко имеют дисплеи с боковой светодиодной подсветкой, которые могут работать также по принципу локального затемнения. Проще говоря, это поддержка локального затемнения. Тонкие модели с боковой светодиодной подсветкой наверняка страдают неравномерной подсветкой экрана, но это еще не все. Главная особенность телевизоров с боковой светодиодной подсветкой — тонкий корпус, из-за которого сложно обеспечить равномерное распределение светового потока по всей плоскости экрана. При покупке телевизора воспроизведите белую поверхность на боковом светодиодном дисплее, чтобы убедиться, что по краям экрана нет более ярких участков. Точно так же, когда экран заполнен черной рамкой, края больше не должны казаться более светлыми серыми.

Также следует отметить, что светодиодная подсветка, независимо от типа, не улучшает углы обзора ЖК-панели. Уровень черного при использовании светодиодной подсветки и возможном смещении угла обзора на 1-2 метра влево или вправо уменьшается. Нельзя забывать об энергоэффективности светодиодной подсветки. Конечно, на энергопотребление любой модели очень сильно влияют размер экрана и яркость источников подсветки. ЖК-телевизоры со светодиодной подсветкой обоих типов значительно более энергоэффективны, чем плазменные. Светодиодные подсветки для ЖК-дисплеев делятся на категории по следующим признакам: цвет свечения: белый или RGB; равномерность освещения: статическая или динамическая; конструктивная: матричная или боковая более подробно описано выше Подсветка RGB используется для реализации возможности точной настройки светового спектра. Кроме того, часто используется дополнительная компенсация изменений в спектре излучения светодиодов с течением времени.

В светодиодных телевизорах со светодиодной подсветкой RGB разные области экрана подсвечиваются в зависимости от цвета картинки. Цветная подсветка обеспечивает лучшую контрастность и глубокий черный цвет, о чем свидетельствуют многие светодиодные телевизоры Sony. Edge LED: лучшая цветопередача Sony использует технологию Triluminos в своих новых флагманских моделях телевизоров, таких как линейка W905. Встроенная в рамку телевизора со всех сторон экрана светодиодная подсветка Edge LED дополнена так называемыми квантовыми точками — полупроводники размером в несколько сотен атомов, излучающие свет в строго заданном диапазоне. Технология Triluminos разработана для минимизации искажения цвета и усиления красных и зеленых оттенков. Это позволит получать очень гладкие и естественные изображения с гораздо более широким диапазоном цветов. Устройства серий W805 и W605, также поступившие в продажу в этом году, не используют Triluminos, а значит, их стоимость значительно ниже.

В будущем производители смогут полностью отказаться от светодиодной подсветки в пользу квантовых точек. Преимущества и недостатки каждого из вариантов Чтобы сравнить два решения и понять плюсы и минусы каждого из них, необходимо сравнить характеристики каждого и выделить положительные и отрицательные стороны. Сравнительная таблица плюсов и минусов. Прямая светодиодная подсветка Edge LED backlight Достоинство Недостатки Равномерное освещение всей матрицы благодаря расположению источников света и наличию рассеивателя Высокая яркость и хороший контраст изображения. Это касается качественных вариантов с яркими светодиодами и хорошо настроенными отражателями. Экраны этого типа яркие и хорошо воспринимаются человеческим глазом, доставляя минимальный дискомфорт Хорошая контрастность, вы можете настроить идеальное изображение даже на большом экране Толщина экрана намного меньше за счет бокового расположения подсветки, что позволяет изготавливать компактные модели без потери качества технологии и ее производительности. Например, подсветка Slim Direct означает, что у телевизора ультратонкий экран, многие производители называют модели по-особому, указывая их минимальную толщину Несложный ремонт системы благодаря удобному расположению блока подсветки.

Такие модели намного проще ремонтировать, если вышли из строя светодиоды За счет простоты системы такие модели зачастую на порядок дешевле, хотя все зависит от производителя и качества комплектующих На темном изображении нет света по краям и углам экрана. Это очень важный фактор для тех, кто хочет идеального образа При деформации матрицы или корпуса качество освещения не снижается, так как диоды расположены сзади и подобные проблемы на них не сильно влияют Большая толщина экрана благодаря дополнительному световому модулю и более низким значениям яркости. Неравномерное освещение в некоторых моделях, особенно часто такая проблема возникает со временем, когда матрица немного деформируется. Еще одна частая проблема — мигание по краям экрана, где установлены диоды Краевые блики обычно случаются при боковом освещении. Разработчики давно хотели массово внедрить технологию светодиодной подсветки, но мешали как технические, так и бюджетные компоненты. Светодиодная подсветка жидкокристаллических дисплеев началась с ноутбуков, поэтому по мере снижения цены и улучшения качества она перекочевала на рынок ЖК-телевизоров, где получила быстрое развитие. Сегодня светодиодная подсветка полностью завоевала рынок ноутбуков сегодня невозможно найти новые модели ноутбуков с подсветкой CCFL.

Он полностью освоил телевидение и продолжает свое победное шествие к мониторам ПК. В чем секрет столь стремительного роста использования светодиодов в качестве подсветки? Что мы имеем сейчас и чего ожидать от технологии светодиодной подсветки в будущем? Боковая подсветка Самый распространенный вид подсветки. В нем светодиоды можно разместить вверху, внизу или по всему периметру ЖК-матрицы. Это зависит от технологии производства конкретного производителя. В этом типе подсветки используются только светодиоды белого цвета.

Для равномерного распределения света по всей площади ЖК-панели используется специальная рассеивающая подложка как в случае с лампами CCFL. По своим световым характеристикам по сравнению с подсветкой CCFL он может отличаться как в лучшую, так и в худшую сторону. Это зависит от производителя, качества сборки конкретной модели и используемых элементов. Главное преимущество бокового освещения — невысокая стоимость исполнения. Значительно тоньше ламповых моделей. Продавцы очень ловко используют эту возможность, следя за тем, чтобы чем тоньше монитор или телевизор, тем он технологичнее и «круче».

Добавлено 20-11-2012 01:17 А питание на такой "светильник" надо организовывать из 220-ти бестрансформаторно. Иначе игра свеч не стоит. Добавлено 20-11-2012 01:20 если палки вставить вместо ламп, то не поплавили бы они чего.

Еще 80 долларов добавят к этому комплекту пять «пикселей», а набор с десятью маленькими «пикселями» и одним большим обойдется в 499 долларов.

Рассыласть девайсы по всему миру разработчики обещаютс февраля следующего года. В успехе кампании сомневаться не приходится: проекту двое суток, а запланированная сумма в 198 000 долларов уже практически собрана. Отдельный светильник Big Pixel.

Подключаться подсветка будет от USB разъёма телевизора, но там только 5V и этого нам недостаточно. Для работы LED ленты обычно нужно 12 или 24V. Поэтому используем повышающий напряжение модуль MT3608 он повысит напряжение с 5 до 12V. Далее подключив USB к разъёму который не жалко спалить на случай если что то пойдёт не так вращением подстроечного резистора выставляем необходимое ленте напряжение.

Похожие новости:

Оцените статью
Добавить комментарий