Новости принцип работы водородной бомбы

Принцип работы водородной бомбы. Все уже успели обсудить одну из самых неприятных новостей декабря — успешные испытания Северной Кореей водородной бомбы. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Водородная (термоядерная) бомба – оружие большой разрушительной силы (измеряющейся в мегатоннах в тротиловом эквиваленте), принцип действия которого основан на реакции ядерного синтеза легких элементов в более тяжелые. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка.

Please wait while your request is being verified...

Принцип действия водородной бомбы или термоядерного заряда, основаны на комбинации ядерного деления и ядерного синтеза. Что такое водородная бомба, как она устроена, принцип действия термоядерного заряда и когда проведены первые испытания в СССР — написано ниже. Водородные прототипы есть в работе почти у всех крупных автоконцернов. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Водородные прототипы есть в работе почти у всех крупных автоконцернов. О том, что в СССР проведено успешное испытание термоядерного заряда (это произошло 12 августа 1953 года на Семипалатинском полигоне) и что на вооружение советской стратегической авиации приняты водородные бомбы, западным разведкам уже было известно.

Ядерная бомба — история появления ядерного оружия

СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. научный руководитель Атомного проекта СССР. СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твердый дейтерид лития.

Последствия взрыва водородной бомбы

3. Водородная бомба: кто выдал её секрет Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.
ВОДОРОДНАЯ БОМБА Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом.
Принцип работы водородной бомбы » ЯУстал - Источник Хорошего Настроения Чтобы разобраться, как работает водородная бомба, разберемся в устройстве атомного оружия.

Уроки водородной бомбы для мирного термоядерного синтеза

Если вы думали, что водородные и термоядерные бомбы — это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород а точнее, его изотопы — дейтерий и тритий требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция. Широко известны две схемы. Первая — сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт.

Вторая — американская схема Теллера — Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу — емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» — плутониевый стержень, а сверху — обычный ядерный заряд, и все это в оболочке из тяжелого металла например, обедненного урана. Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера — Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать». Какие еще бомбы бывают? Еще бывают нейтронные, но это вообще страшно.

Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия — источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн. Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее. А как же кобальтовая бомба? Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве.

Физик Лео Силард, описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня». Что круче: ядерная бомба или термоядерная? Натурный макет «Царь-бомбы" Водородная бомба является гораздо более продвинутой и технологичной, чем атомная.

Для этого в апреле 1946-го на базе Лос-Аламосской национальной лаборатории начала работать группа специалистов, которую возглавил физик Эдвард Теллер.

Теллер разработал схему прямолинейной реализации «зажигалки» — атомной бомбы в толще жидкого дейтерия. Для реализации проекта нужно было много трития. Пришлось построить ряд реакторов. Термоядерное устройство его назвали Mike начали разрабатывать лишь полгода спустя.

Американцы справились быстро.

Водород частично сдетонировал, но для изготовления термоядерных боеприпасов такой метод явно не годился. Не годилась и идея британцев — изготовить большой полый шар из сверхкритической массы плутония и поместить капсулу с термоядерным горючим внутрь. Взорвалось сильно — 700 килотонн даже без капсулы. Но бомба сожрала 120 килограммов плутония — это столько, сколько Британия могла произвести за год. Термоядерный заряд должен был располагаться отдельно от инициирующего, соответственно, для осуществления радиационного обжатия требовались решения нетривиальные. В современной конструкции оба заряда — инициирующий и термоядерный — помещаются в заполненную рентгенопрозрачным пластиком общую оболочку из обеднённого урана. При подрыве ядерного заряда внешняя оболочка, в том числе и её затенённый термоядерной капсулой участок, «освещённый» благодаря рассеянию излучения в пластике, предсказуемо превращается в плазму также излучающую соответствующий своей температуре рентген. И давление направленного внутрь излучения симметрично — именно равномерное давление со всех направлений требует изощрённых методов — обжимает капсулу.

Капсула, в свою очередь, для обеспечения равномерного сжатия могла представлять собой цилиндр, усеченный конус, яйцо, — лишь в 80-х удалось добиться равномерного действия излучения, позволяющего использовать капсулы в форме сферы. Внешний её слой, опять-таки, состоит из обеднённого урана, средний из термоядерного горючего, внутренний же из подкритической массы плутония. В результате обжатия плотность плутония увеличивается, критическая масса достигается и происходит второй ядерный взрыв. Термоядерная реакция начинается в момент, когда внешние слои капсулы ещё падают внутрь, а внутренние со всей ядерной силы уже стремятся наружу. На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться.

Модель реакторной камеры ИТЭР Намного более перспективными являются устройства гораздо меньшего размера, использующие сильно неравновесные импульсные режимы, такие как фокусированная плотная плазма DPF. DPF использует процессы самоорганизации в плазме для достижения чрезвычайно высокой плотности энергии. Второй основной подход, на котором я сосредоточусь в этой статье, называется термоядерным синтезом с инерционным удержанием ICF. В ICF мы не пытаемся ограничить расширение плазмы; но перед началом процесса мы сжимаем топливо до такой высокой плотности, что большое количество реакций происходит уже в первые моменты, до того как оно успевает расшириться.

В этот крошечный промежуток времени энергия, выделяемая каждой реакцией, нагревает смесь еще больше; процесс горения становится самоподдерживающимся — достигается воспламенение. Получается миниатюрный термоядерный взрыв. Будущий реактор ICF будет работать в импульсном режиме, при этом крошечные топливные таблетки одна за другой сбрасываются во взрывную камеру и зажигаются лазерными импульсами. Взрывная камера NIF слева. Лазерный отсек NIF, генерирующий 192 луча Излишне говорить, что базовая физика ICF была разработана в контексте разработки ядерного оружия и до сих пор существенно пересекается с областью секретных военных исследований. Можно было бы много сказать о политике магнитного и инерционного синтеза, но это не моя тема здесь. ОтSuper-бомбы к радиационному взрыву Пока что единственной доступной технологией генерирования большого количества избыточной энергии с помощью реакций ядерного синтеза является водородная бомба, также известная как термоядерная бомба. Впервые эта технология была успешно испытана 31 октября 1952 года. Во время американского Манхэттенского проекта создания атомной бомбы, использующей реакции ядерного деления, физик Эдвард Теллер задумал потенциально гораздо более разрушительное оружие, основанное не на делении урана, а на синтезе изотопов водорода.

Его называли Super. Поскольку было ясно, что химические взрывчатые вещества не могут генерировать температуру в десятки миллионов градусов, необходимую для зажигания термоядерных реакций, единственным вариантом было использование бомбы деления. Название изобретения — «Совершенствование методов и средств использования ядерной энергии». Что и говорить, устройство не предназначалось для гражданского использования! Содержание патента фон Неймана-Фукса до сих пор официально является секретом правительства США, но его можно найти в увлекательной серии томов, опубликованных в России в 2008 году «Атомный проект СССР: Документы и материалы». Там можно найти подробный текст с расчетами и диаграммами в переводе на английский и русский языки, а также комментарии к нему ведущих советских исследователей с 1948 года. Как такое возможно? Клаус Фукс позже признал, что был советским агентом! В конструкции фон Неймана-Фукса уже заложено то, что стало основным принципом действия водородной бомбы: «радиационная имплозия».

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

К созданию водородной бомбы Советский Союз подтолкнула непростая политическая ситуация. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама. К созданию водородной бомбы Советский Союз подтолкнула непростая политическая ситуация. О том, что в СССР проведено успешное испытание термоядерного заряда (это произошло 12 августа 1953 года на Семипалатинском полигоне) и что на вооружение советской стратегической авиации приняты водородные бомбы, западным разведкам уже было известно. Отстав на старте разработки водородной бомбы, СССР довольно быстро догнал соперника.

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез.
Литературные дневники / Проза.ру В конструкции фон Неймана-Фукса уже заложено то, что стало основным принципом действия водородной бомбы: «радиационная имплозия».
Термоядерное оружие — Википедия К истории создания водородной бомбы в СССР.
«Отец» водородной бомбы Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии.
Истинное происхождение советской водородной бомбы Принцип их работы немного отличается: если к взрыву атомной бомбы приводит распад ядра, то водородная бомба взрывается благодаря синтезу элементов с выделением колоссального количества энергии.

Водородная бомба и ядерная бомба отличия

миллионнократная миниатюризация водородных бомб до размера наперстка - ради применения термоядерных микровзрывов. ВОДОРОДНАЯ БОМБА — оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Принцип работы водородной бомбы. Все уже успели обсудить одну из самых неприятных новостей декабря — успешные испытания Северной Кореей водородной бомбы. Кураторство над всеми работами по водородной бомбе осуществлял (на тот момент профессор) Юрий Харитон.

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

Водородные прототипы есть в работе почти у всех крупных автоконцернов. оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Работа создателей первой водородной бомбы, в том числе и сотрудников КБ-11, была высоко оценена советским правительством. О том, что в СССР проведено успешное испытание термоядерного заряда (это произошло 12 августа 1953 года на Семипалатинском полигоне) и что на вооружение советской стратегической авиации приняты водородные бомбы, западным разведкам уже было известно.

Водородная (термоядерная) бомба: испытания оружия массового поражения

При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии. Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. Изотопы водорода Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды H2O , было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода 2H или дейтерий , ядра которых, помимо одного протона, содержат так же один нейтрон частицу, близкую по массе к протону, но лишённую заряда.

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона.

В носовом обтекателе — управляющая электроника. За ним отсек с зарядом, внешне выглядящим как совершенно неброский металлический цилиндр.

Потом еще относительно небольшой отсек с электроникой и хвостовик с жестко закрепленными стабилизаторами, содержащий тормозной стабилизирующий парашют, для замедления скорости падения, чтобы сбросивший бомбу самолет получил время уйти из зоны воздействия взрыва. Кстати, на авиабазе Рамштайн в Германии лежит 12 штук бомб В61. Общий объём производства всех модификаций B61 составляет примерно 3155 изделий, из которых на вооружении находится около 150 стратегических бомб плюс около 400 нестратегических, и ещё около 200 нестратегических бомб хранится в резерве — итого около 750 изделий.

Куда же делись остальные? Да, их сколько-то потеряли — но не две с лишним тысячи. Как выяснилось, бомбы тоже ржавеют.

Даже атомные. Хотя это выражение и не стоит воспринимать буквально, общий смысл происходящего именно такой. По целому ряду естественных причин сложное оружие с течением времени утрачивает свои изначальные свойства настолько, что возникают весьма серьезные сомнения в его срабатывании, если дело до того дойдет.

Изготовители ядерных боеголовок по обе стороны океана дают одинаковый гарантийный срок на свои изделия — как правло, 20 лет и очень редко когда срок доходит до 30 лет. Поскольку вряд речь идет о корпоративном сговоре монополистов, очевидно, что проблема — в законах физики. Без него сложно было бы понять суть проблемы, с которой столкнулись США, и которую пытались скрывать на протяжении как минимум последних 15 лет.

С тритием-то там никаких проблем. Дейтерид-лития-6 — вещество твердое и по своим характеристикам достаточно стабильное. Обычная взрывчатка, из которой состоит детонационная сфера первоначального инициатора триггера, со временем свои характеристики конечно меняет, но ее замена особой проблемы не создает.

А вот к плутонию есть вопросы.

Ученые положили в основу такой реакции изотопы водорода, что и дало название будущей бомбе. Именно на дейтерий и тритий положились основные задачи термоядерной реакции.

Чуть позже основой водородной бомбы стало соединение дейтерия и изотопа лития, которое получило название дейтерид лития-6. Этот элемент стал термоядерным горючим, имея в своем составе главные ингредиенты требуемой реакции. Изотоп лития служит исходным материалом для получения трития, вследствие воздействия высокой температуры и давления.

Оболочка несущего контейнера состоит из пластика и урана-238. В ее пределах располагается ядерный заряд — катализатор реакции водородной бомбы. Во время взрыва этого заряда возникает громадное рентгеновское излучение, которое превращает оболочку в плазму.

Происходит сжатие, измеримое в тысячном эквиваленте, которое и создает необходимые первичные условия для начала термоядерной реакции. Ядра образовавшегося трития взаимодействуют с дейтерием, вызывая термоядерный взрыв. Возможность использования нескольких слоев урана-238 и дейтерида лития-6, делают границы мощности заряда неосязаемыми.

Возможные последствия Многие ученые, разрабатывая ядерную и водородную бомбы, преследовали довольно гуманные цели. Они полагали, что такое мощное оружие положит конец войнам и восстановит мирное существование на Земле. Ядерные арсеналы действительно дают возможность регулировать геополитическую обстановку в мире.

Однако высока опасность попадания подобной силы в «неправильные» руки, что может стать причиной глобальной катастрофы человечества. Каждый из жителей планеты должен всем сердцем желать, чтобы никогда наше небо не озарила вспышка от ядерной или водородной бомбы.

Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий.

Эти условия обеспечивают следующим образом. Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий.

Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Принцип работы водородной бомбы

Как Сахаров и Теллер чуть не взорвали мир Изменение ситуации с работами по водородной бомбе в СССР в 1948 году было связано с поступлением новой разведывательной информации.
Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы На это Теллер ответил: «Главный принцип излучательного обжатия был разработан в связи с термоядерной программой и был изложен на конференции по H-бомбе весной 1946 года.
Как устроена водородная бомба — Старый Русский Топ Принцип действия водородной бомбы. Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.
Ядерная бомба: год создания в СССР и США, первое испытание, самая мощная Такой стереотип работы нейтронной бомбы возник еще во времена СССР из-за непонимания принципа ее работы.

Похожие новости:

Оцените статью
Добавить комментарий