Новости почему поверхностное натяжение зависит от рода жидкости

Рис.2.5. Зависимость поверхностного натяжения неполярной жидкости от Т. Другие вещества менее строго следуют этой зависимости, но часто отклонениями можно пренебречь, т.к. dσ/dТ слабо зависит от температуры (для воды dσ/dТ= -0,16 10-3 Дж/м2). Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости. Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит. Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий.

Свойства жидкостей. Поверхностное натяжение

Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). Главная» Новости» Почему поверхностное натяжение зависит от рода жидкости. Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры (с увеличением скорости движения молекул).

Свойства жидкостей. Поверхностное натяжение

Вода с низким поверхностным натяжением Таким образом, можно сделать вывод, что поверхностное натяжение зависит от рода жидкости и ее химических свойств.
Почему рода жидкости влияет на поверхностное натяжение? Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения.

Поверхностное натяжение жидкости

Коэффициент поверхностного натяжения зависит от химического состава жидкости, среды, с которой она граничит, температуры. Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др. Поверхностное натяжение на границе двух жидкостей зависит от полярности. Почему поверхностное натяжение воды зависит от рода жидкости. Следовательно, силы поверхностного натяжения будут действовать слабее.

Поверхностное натяжение жидкости

Третья сила — земное притяжение — всегда направлена вертикально вниз. В большом пруду основное направление задается силой тяжести, которая превращает всю поверхность в горизонтальную плоскость; поэтому две другие силы также вертикальны. На молекулы же, расположенные вблизи твердой стенки или на поверхности небольшой искривленной капли, притяжение соседей влияет намного больше, чем сила тяжести. Поэтому для объяснения искривленного мениска или краевого угла силой тяжести можно пренебречь. Просто говорят: «Поверхность располагается перпендикулярно равнодействующей сил притяжения, которые действуют на молекулу, находящуюся на поверхности».

Краевой угол и молекулярные силы Чтобы объяснить природу краевого угла с точки зрения молекулярных сил, рассмотрим силы притяжения, действующие на молекулу С, которая находится в том месте, где лужица жидкости соприкасается с твердым столом фиг. Силы, действующие на молекулу, находящуюся на краю небольшой лужицы жидкости. Лужица находится на столе, который сильно притягивает молекулы жидкости. Во-первых, на нее действует притяжение соседей, находящихся внутри слоя жидкости; равнодействующая этих сил равна F1 и направлена по биссектрисе угла клина направление подсказано симметрией.

Во-вторых, ее притягивают молекулы твердого стола с равнодействующей F2, которая перпендикулярна столу снова по соображениям симметрии. Векторное сложение сил F1 и F2 и дает их равнодействующую R; поверхность жидкости должна расположиться перпендикулярно R. Это схематически изображено на фиг. В таком случае краевой угол невелик и жидкость смачивает стол.

Можно сказать, что сильно притягивающий стол побуждает жидкость растекаться. Таким образом, смачивание зависит от относительной силы молекулярного притяжения. Если молекулы жидкости притягиваются молекулами твердого тела сильнее, чем соседними молекулами самой жидкости, жидкость будет смачивать стол и растекаться. С другой стороны, если молекула жидкости предпочитает своих собратьев молекулам стола, силу F1 следует нарисовать больше F2 и картина примет такой вид, как на фиг.

Для «водоотталкивания», по-видимому, требуется, чтобы молекулы жидкости испытывали со стороны соседних молекул стола меньшее притяжение, чем со стороны соседних молекул жидкости. Лужица находится на столе, который слабо притягивает молекулы жидкости. Водоотталкивание и смачивание Таково молекулярное объяснение смачивания и краевого угла. Разве это не просто волшебная сказка, выдуманная для того, чтобы свести концы с концами?

Нет, это объяснение совсем не так плохо, поскольку оно основано на молекулярных представлениях, которые используются в других областях физики и химии. Кроме того, оно позволяет сделать полезные рекомендации: 1 Для улучшения смачивания мечта прачек надо сделать F2 больше, чем F1, т. Это можно осуществить, применяя молекулы-посредники, которыми на практике являются молекулы мыла. Таким образом, мы раскрыли секрет мыла и указали путь к созданию новых синтетических моющих средств.

На вопрос: «Какой толщины должно быть покрытие? На вопрос: «Какова толщина молекулы? Это особенно заметно, когда жидкости поднимаются в очень узких трубках; «капиллярность» — полезное свойство жидкостей, и мы сейчас его разберем. Нагрейте кусок стеклянной трубки, растяните его в очень тонкую трубку и опустите один ее конец в чернила фиг.

Окрашенная вода поднимается вверх вопреки силе тяжести, опровергая правило: «вода в сообщающихся сосудах устанавливается на одном уровне». Однако в U-образной трубке с колонами разного сечения жидкость все же устанавливается на одном уровне фиг. Если вспомнить обсуждение относительной роли поверхностных и объемных эффектов, можно догадаться, что влияние поверхностного натяжения будет более заметно в приборах малых размеров; например, в небольшой U-образной трубке фиг. Конечно, это то же самое, что мы уже видели при погружении тонкой трубки в чернила.

Наброски, представленные на фиг. Если жидкость поднимается в тонких трубках, то в еще более тонких она должна подняться еще выше. Проверьте это см. Капиллярные явления.

Поскольку это следствие поверхностного натяжения проявляется в трубках, «тонких, как волос», оно получило название от латинского слова «волос» — capilla. Таким образом, капиллярность — это старое название поверхностного натяжения, которое еще применяется, чтобы охарактеризовать поведение жидкостей в тонких трубках. Это красивое название, но оно не объясняет подъема жидкости. Сказать, что вода поднимается по тонкой трубке вследствие капиллярности, по существу то же, что сказать «вследствие поведения тонких трубок».

Рассматривая через увеличительное стекло мениск поверхность жидкости в тонкой трубке, мы увидим, что он висит, как прикрепленный к стеклу изогнутый мешок, весьма похожий на одеяло пожарников, которые ловят выбрасывающегося из окна горящего дома тяжелого мужчину фиг. Снова возникает мысль о резиновой оболочке. Если измерить силы, удерживающие оболочку, то видно, что эти же силы определяют форму маленьких капель. Можно даже говорить, что оболочка удерживает поднимающуюся по трубке жидкость[75], но более реально говорить о молекулах, которые вскарабкиваются по внутренней поверхности трубки и образуют изогнутый мениск.

Жидкости поднимаются не только в круглом стеклянном капилляре. Капиллярность проявляется в любом узком пространстве. Когда вода стекает между щетинками малярной кисти или увлажняет в ванне ваши волосы, то она заполняет не полые волоски, а узкие промежутки между отдельными волосками. На таком поведении жидкостей основано всасывание масла в ламповый фитиль, воды в банное полотенце и т.

Задача 3 трудная. Формула капиллярности Допустим, что подъем жидкости в капилляре определяется разностью давлений по обе стороны мениска. Вернитесь к опыту с двумя соединенными друг с другом мыльными пузырями см. Какой вывод только из этого опыта можно сделать о соотношении между высотой подъема в капилляре и его диаметром?

Задача 4. Капиллярность в несмачиваемой трубке Возьмем жидкость, которая образует со стенками трубки большой краевой угол. К задаче 4. Уровень ртути в широкой трубке показан, но рисунки не закончены.

Набросайте в тетради все эти рисунки и закончите их. Применения капиллярности Чтобы жидкость втягивалась в капилляр, а не только поднималась вверх, и вообще проникала в поры, необходим малый краевой угол между жидкостью и стенками пор. При большой величине краевого угла предметы будут оставаться сухими. Ниже приведены примеры, которые демонстрируют роль капиллярности и смачивания в природе и в быту.

Чернила на конце пера щель на конце пера подает чернила на бумагу вследствие капиллярности; стальные перья, применявшиеся прежде, когда они бывали новыми, имели большой краевой угол, и для улучшения работы перья следовало смочить слюной. Чернила на бумаге но поры в бумаге должны быть закрыты. Кровь на бинтах. Капли от насморка на слизистой оболочке носа.

Припой на металле для уменьшения краевого угла применяют флюс. Слюна на пище. Растворитель для краски на сухом порошке красителя. Жидкая краска на окрашиваемых поверхностях с этим связан ряд вопросов в технике живописи.

Мыльная вода при стирке грязной одежды. Вода на стеклах очков здесь нет узких промежутков, но при небольшом краевом угле конденсирующаяся на стекле вода создает плоскую пленку, а не туман из капелек. Блинное тесто на сковороде. Вода на полу в ванной.

Вода на стеклах очков мелкие капли быстрее испаряются. Важную роль капиллярность играет в садоводстве. Вода проникает в тонкие промежутки между частицами почвы. Разрыхление и вскапывание изменяет размеры этих промежутков и затрудняет доступ воды из глубины почвы к поверхности, предотвращая тем самым ее испарение.

Кирпичи пористы. Кирпичные дома на высоте 30 см или более от поверхности земли должны иметь изоляцию от влаги из непористого материала. Объяснение капиллярности с молекулярной точки зрения По всей трубке вверх поднимается очень тонкий слой жидкости, возможно, толщиной в одну молекулу, а за ним ползет основная масса жидкости, образуя искривленный мениск. Силы F1 и F2 для случаев малого и большого краевого угла схематически изображены на фиг.

Молекулярные силы, краевой угол и капиллярность. Поверхность жидкости располагается перпендикулярно равнодействующей R сил притяжения, действующих на ее молекулы. Это является результатом короткодействующих сил, которые проявляются при столкновениях с другими молекулами. Когда краевой угол равен нулю, стеклянная стенка, вероятно, на всем протяжении покрыта тонким слоем жидкости толщиной в несколько молекул.

Мениск всползает по этому слою жидкости. Рисунки весьма упрощены, так как на них не учтена сила тяжести. Вещества, облегчающие смачивание: мыла и моющие средства Очень часто, когда нужен малый краевой угол, природа дает нам большой. Овечья шерсть, например, не смачивается водой; это мешает обработке отары растворами при дезинсекции.

С обеденной посуды вода скатывается, как со спины утки, и даже на чайных стаканах порой остаются несмачиваемые отпечатки пальцев. А новые посудные полотенца, поступающие со склада с ужасной восковой отделкой! Нам необходимы молекулы-посредники, которые образовывали бы промежуточный слой и уменьшали бы краевой угол между водой и жирными тарелками, покрытыми воском волокнами одежды и т. Сейчас эту роль выполняют моющие средства, предшественником которых было мыло.

Мыло действует на жир с помощью поверхностного натяжения, помогая воде заползать под жир и отрывать его частички, которые смываются в виде эмульсии скопление мелких частиц жира, взвешенных в воде. Один конец молекулы мыла имеет сродство к воде вследствие химического или электрического притяжения[76], а другой конец инертен к воде, но легко присоединяется к жиру. В то время как «жирные» концы образуют облако вокруг частиц жира, «водяные» концы выступают наружу и притягивают воду. Современные синтетические мыла или стиральные порошки обычно облегчают смачивание.

Их молекулы действуют как посредники и уменьшают краевой угол. Они проникают в любую щель между жиром и тарелкой, облегчая попадание туда воды. Вообразим себя в роли физиков-судомоек, которые приходят к группе химиков и говорят: «Пожалуйста, разработайте и пустите в производство вещество, которое было бы пригодно в качестве моющего средства. Производство этого средства должно быть недорогим».

Современные химики-органики ответят: «Это легко сделать». Чтобы прицепиться к воску или к жиру, молекулы должны иметь длинную углеводородную цепь, подобную следующей[77]»: но не слишком длинную, иначе она не будет растворяться в воде. Воски и жиры имеют аналогичную цепную структуру, и они должны притягивать такие цепи. Затем это вещество на одном из концов должно иметь нечто обладающее сродством к воде, например атом натрия.

Такого рода молекулы были сконструированы и изготовлены, и сейчас мы покупаем их в больших количествах в хозяйственных магазинах. Ниже приведены примеры обычного мыла и синтетического стирального порошка подобной структуры[78]. К числу таких веществ относится также применяемый в фотографии и исследовательской работе аэрозоль. На покрытое воском стекло наносят каплю чистой воды фиг.

Концом спички добавляют раствор моющего средства и следят за изменением краевого угла. Действие смачивающего агента. Длинные молекулы показаны линией с точкой, которая обозначает группу, имеющую сродство к воде. Молекулы смачивающего агента аэрозоля показаны не в масштабе, а увеличены во много раз.

Опыт 14. Новое посудное полотенце с воскообразной поверхностью разрезают на два куска и растягивают на наклонном столе. На один кусок выливают крепкий раствор красителя. Краситель впитывается с трудом, большая его часть стекает.

Затем на другой кусок выливают остаток красителя, к которому добавлено небольшое количество моющего средства. Действие мыла и моющих средств. Когда раствор моющего средства попадает на покрытую воском поверхность, его молекулы скапливаются вокруг воска, причем их «жирные» концы направлены в сторону воска, а «водяные» — наружу. Эти внешние концы создают оболочку, которая притягивает воду, и этим облегчают смачивание.

Аэрозоль, молекула которого имеет удвоенную длину, прикрепляется к воску, жиру или целлюлозе обоими концами и поднимает имеющую сродство к воде середину, подобно выгнувшей спину гусенице; выпяченные «спины» создают притягивающую воду оболочку. Мытье посуды. Молекулы большинства моющих средств и мыла имеют на одном конце группу, обладающую сродством к воде. Действие этих веществ при мытье посуды схематически изображено на фиг.

Действие моющего вещества натурального или синтетического. Мыльные пузыри на вид достаточно прочны; если их ударить, они подскакивают и, если испарения нет, сохраняются довольно долго. Происходит это по следующим причинам: 1 Молекулы мыла собираются с обеих сторон пленки, причем их концы, имеющие сродство к воде, направлены внутрь, а инертные — наружу, создавая нейтральную поверхностную оболочку[79] которая ни к чему не прилипает. В то же время чистая жидкость редко образует устойчивые пузырьки или пену, поэтому остерегайтесь пить воду из прудов, на поверхности которых бывает пена.

Чтобы плащ не пропускал воду, поверхностное натяжение не должно позволять воде проникать в поры.

Эти силы определяют, насколько тесно молекулы жидкости связаны между собой на поверхности, что влияет на её поверхностное натяжение. Поверхностное натяжение Свойства поверхностного слоя жидкости. Поверхностное натяжение.

Например, ртуть не смачивает стекло, а вода не смачивает покрытую сажей поверхность. Капля несмачивающей жидкости принимает форму, близкую к сферической, а поверхность жидкости вблизи стенки сосуда является выпуклой Если же капельку ртути поместить на цинковую пластину, то капелька будет стремиться растечься по поверхности пластины; так же ведет себя и капелька воды на стекле рис. Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела.

Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму Почему жидкость поднимается в капиллярах В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами от лат. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы. В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Под вогнутой поверхностью жидкость смачивает капилляр лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т.

Под выпуклой поверхностью жидкость не смачивает капилляр лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема или опускания жидкости см. Пример решения задачи Капиллярную трубку радиусом r одним концом опустили в жидкость, смачивающую внутреннюю поверхность капилляра. Чему равно лапласово давление под вогнутой поверхностью капилляра? Смачивание считайте полным. Решение: На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения направлена вертикально вверх по касательной к поверхности мениска.

Автор24 — интернет-биржа студенческих работ Жидкость, в отличие от твердых тел и газов, не способна заполнить весь объем сосуда, в который она была помещена. Между паром и жидким веществом формируется определенная граница раздела, которая действует в особых условиях по сравнению с другой массой жидкости. Первый элемент окружен другими атомами жидкости равномерно, поэтому действующие на молекулу силы со стороны попадающих в сферу межмолекулярного взаимодействия частиц всегда скомпенсированы, или, иными словами, их равнодействующая мощность равна нулю. Таким образом, для того чтобы молекула из глубины жидкости оказалась в поверхностном слое, следует выполнить работу против нескомпенсированных сил.

А это означает, что атомы приповерхностного уровня, по сравнению с частицами внутри жидкости, оснащены избыточной потенциальной энергией, которая носит название поверхностной энергии. Коэффициент поверхностного натяжения Рисунок 3. Поверхностное напряжение. Автор24 — интернет-биржа студенческих работ Определение 2 Коэффициент поверхностного натяжения — это физический показатель, характеризующий определенную жидкость и численно равный соотношению поверхностной энергии к общей площади свободной среды жидкости. Указанная величина напрямую зависит от: природы жидкости у «летучих элементах таких, как спирт, эфир, бензин, коэффициент поверхностного натяжения значительно меньше, чем у «нелетучих — ртути, воды ; температуры жидкого вещества чем выше температура, тем меньше итоговое поверхностное натяжение ; свойств идеального газа, граничащий с данной жидкостью; наличия стабильных поверхностно-активных элементов таких, как стиральный порошок или мыло, которые способны уменьшить поверхностное натяжение.

Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя

Жидкости стремятся принять форму, которая требует минимальной площади поверхности. Силы поверхностного натяжения Силы поверхностного натяжения работают вдоль поверхности жидкости перпендикулярно контуру. Сокращают ее площадь. Это похоже на пленку, которая стягивает объем. На сам объем силы не оказывают влияние.

Вычислите коэффициент поверхностного натяжения.

Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. При увеличении температуры он уменьшается. Примеси в основном уменьшают некоторые увеличивают коэффициент поверхностного натяжения. Таким образом, поверхностный слой жидкости представляет собой как бы эластичную растянутую пленку, охватывающую всю жидкость и стремящуюся собрать ее в одну «каплю». Такая модель эластичная растянутая пленка позволяет определять направление сил поверхностного натяжения. Например, если пленка под действием внешних сил растягивается, то сила поверхностного натяжения будет направлена вдоль поверхности жидкости против растяжения. Однако это состояние существенно отличается от натяжения упругой резиновой пленки.

Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой. Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется она не зависит от площади поверхности. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекул жидкости с молекулами твердого тела. Смачивание — явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел. Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающей это тело. Одна и та же жидкость может быть смачивающей и несмачивающей по отношению к разным телам. Так, вода смачивает стекло и не смачивает жирную поверхность, ртуть не смачивает стекло, а смачивает медь. Смачивание или несмачивание жидкостью стенок сосуда, в котором она находится, влияет на форму свободной поверхности жидкости в сосуде.

Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Поверхностное натяжение существенно зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются поверхностно-активными веществами ПАВ. Наиболее известным поверхностно-активным веществом относительно воды является мыло.

Относительно воды поверхностно-активными являются эфиры, спирты, нефть т. С молекулярной точки зрения влияние поверхностно-активных веществ объясняется тем, что силы притяжения между молекулами жидкости больше, чем силы притяжения между молекулами жидкости и примеси. Молекулы жидкости в поверхностном слое с большей силой втягиваются внутрь жидкостей, чем молекулы примеси. В результате этого молекулы жидкости переходят с поверхностного слоя вглубь ее, а молекулы поверхностно-активного вещества вытесняются на поверхность.

Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами. Это делает воду «сильной» жидкостью, которая может образовывать капли и позволяет насекомым, таким как стрекозы, ходить по поверхности воды. Таким образом, различия в поверхностном натяжении между разными жидкостями обусловлены их молекулярной структурой и взаимодействием между молекулами.

Поверхностное натяжение жидкости - формулы и определение с примерами

Почему поверхностное натяжение жидкости зависит от рода жидкости? Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др. #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать. 1. Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости? Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).

Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя

На молекулы, расположенные в поверхностном слое, действует направленная внутрь жидкости равнодействующая сила и сжимает ее. Это приводит к тому, что площадь свободной поверхности стремится принять минимальное значение. Проанализируйте зависимость поверхностного натяжения данной жидкости от температуры, используя таблицу с.

Причина зависимости, установленной Дюкло и Траубе, заключается в том, что с увеличением длины углеводородной цепи уменьшается растворимость органических кислот и тем самым увеличивается стремление молекул перейти из объема в поверхностный слой. Вещества, увеличивающие поверхностное натяжение жидкости, называются поверхностно-неактивными или поверхностно-инактивными ПИВ. Поверхностно-инактивными веществами по отношению к воде являются неорганические электролиты — кислоты, щелочи, соли. Они взаимодействуют с водой сильнее, чем молекулы воды между собой. Явление изменения концентрации вещества в поверхностном слое жидкости в результате его самопроизвольного перехода из объема фазы называется адсорбцией. Адсорбционное равновесие определяется двумя процессами: притяжением молекул к поверхности под действием межмолекулярных сил и тепловым движением, стремящимся восстановить равенство концентраций в поверхностном слое и объеме фазы.

Адсорбцию растворенного вещества на границе раствор — воздух целесообразно рассматривать с термодинамических позиций и связывать ее с изменением энергии поверхности или ее поверхностного натяжения. Гиббс установил зависимость между избытком адсорбированного вещества в поверхностном слое Г, активностью растворенного вещества в растворе a и поверхностным натяжением s на границе жидкость — газ: 3. Из уравнения Гиббса 3. Зависимость поверхностного натяжения от концентрации для ПАВ достаточно точно подчиняется эмпирическому уравнению, выведенному Б. Шишковским: , 3.

Какой вывод только из этого опыта можно сделать о соотношении между высотой подъема в капилляре и его диаметром? Задача 4. Капиллярность в несмачиваемой трубке Возьмем жидкость, которая образует со стенками трубки большой краевой угол. К задаче 4. Уровень ртути в широкой трубке показан, но рисунки не закончены.

Набросайте в тетради все эти рисунки и закончите их. Применения капиллярности Чтобы жидкость втягивалась в капилляр, а не только поднималась вверх, и вообще проникала в поры, необходим малый краевой угол между жидкостью и стенками пор. При большой величине краевого угла предметы будут оставаться сухими. Ниже приведены примеры, которые демонстрируют роль капиллярности и смачивания в природе и в быту. Чернила на конце пера щель на конце пера подает чернила на бумагу вследствие капиллярности; стальные перья, применявшиеся прежде, когда они бывали новыми, имели большой краевой угол, и для улучшения работы перья следовало смочить слюной. Чернила на бумаге но поры в бумаге должны быть закрыты. Кровь на бинтах. Капли от насморка на слизистой оболочке носа. Припой на металле для уменьшения краевого угла применяют флюс. Слюна на пище.

Растворитель для краски на сухом порошке красителя. Жидкая краска на окрашиваемых поверхностях с этим связан ряд вопросов в технике живописи. Мыльная вода при стирке грязной одежды. Вода на стеклах очков здесь нет узких промежутков, но при небольшом краевом угле конденсирующаяся на стекле вода создает плоскую пленку, а не туман из капелек. Блинное тесто на сковороде. Вода на полу в ванной. Вода на стеклах очков мелкие капли быстрее испаряются. Важную роль капиллярность играет в садоводстве. Вода проникает в тонкие промежутки между частицами почвы. Разрыхление и вскапывание изменяет размеры этих промежутков и затрудняет доступ воды из глубины почвы к поверхности, предотвращая тем самым ее испарение.

Кирпичи пористы. Кирпичные дома на высоте 30 см или более от поверхности земли должны иметь изоляцию от влаги из непористого материала. Объяснение капиллярности с молекулярной точки зрения По всей трубке вверх поднимается очень тонкий слой жидкости, возможно, толщиной в одну молекулу, а за ним ползет основная масса жидкости, образуя искривленный мениск. Силы F1 и F2 для случаев малого и большого краевого угла схематически изображены на фиг. Молекулярные силы, краевой угол и капиллярность. Поверхность жидкости располагается перпендикулярно равнодействующей R сил притяжения, действующих на ее молекулы. Это является результатом короткодействующих сил, которые проявляются при столкновениях с другими молекулами. Когда краевой угол равен нулю, стеклянная стенка, вероятно, на всем протяжении покрыта тонким слоем жидкости толщиной в несколько молекул. Мениск всползает по этому слою жидкости. Рисунки весьма упрощены, так как на них не учтена сила тяжести.

Вещества, облегчающие смачивание: мыла и моющие средства Очень часто, когда нужен малый краевой угол, природа дает нам большой. Овечья шерсть, например, не смачивается водой; это мешает обработке отары растворами при дезинсекции. С обеденной посуды вода скатывается, как со спины утки, и даже на чайных стаканах порой остаются несмачиваемые отпечатки пальцев. А новые посудные полотенца, поступающие со склада с ужасной восковой отделкой! Нам необходимы молекулы-посредники, которые образовывали бы промежуточный слой и уменьшали бы краевой угол между водой и жирными тарелками, покрытыми воском волокнами одежды и т. Сейчас эту роль выполняют моющие средства, предшественником которых было мыло. Мыло действует на жир с помощью поверхностного натяжения, помогая воде заползать под жир и отрывать его частички, которые смываются в виде эмульсии скопление мелких частиц жира, взвешенных в воде. Один конец молекулы мыла имеет сродство к воде вследствие химического или электрического притяжения[76], а другой конец инертен к воде, но легко присоединяется к жиру. В то время как «жирные» концы образуют облако вокруг частиц жира, «водяные» концы выступают наружу и притягивают воду. Современные синтетические мыла или стиральные порошки обычно облегчают смачивание.

Их молекулы действуют как посредники и уменьшают краевой угол. Они проникают в любую щель между жиром и тарелкой, облегчая попадание туда воды. Вообразим себя в роли физиков-судомоек, которые приходят к группе химиков и говорят: «Пожалуйста, разработайте и пустите в производство вещество, которое было бы пригодно в качестве моющего средства. Производство этого средства должно быть недорогим». Современные химики-органики ответят: «Это легко сделать». Чтобы прицепиться к воску или к жиру, молекулы должны иметь длинную углеводородную цепь, подобную следующей[77]»: но не слишком длинную, иначе она не будет растворяться в воде. Воски и жиры имеют аналогичную цепную структуру, и они должны притягивать такие цепи. Затем это вещество на одном из концов должно иметь нечто обладающее сродством к воде, например атом натрия. Такого рода молекулы были сконструированы и изготовлены, и сейчас мы покупаем их в больших количествах в хозяйственных магазинах. Ниже приведены примеры обычного мыла и синтетического стирального порошка подобной структуры[78].

К числу таких веществ относится также применяемый в фотографии и исследовательской работе аэрозоль. На покрытое воском стекло наносят каплю чистой воды фиг. Концом спички добавляют раствор моющего средства и следят за изменением краевого угла. Действие смачивающего агента. Длинные молекулы показаны линией с точкой, которая обозначает группу, имеющую сродство к воде. Молекулы смачивающего агента аэрозоля показаны не в масштабе, а увеличены во много раз. Опыт 14. Новое посудное полотенце с воскообразной поверхностью разрезают на два куска и растягивают на наклонном столе. На один кусок выливают крепкий раствор красителя. Краситель впитывается с трудом, большая его часть стекает.

Затем на другой кусок выливают остаток красителя, к которому добавлено небольшое количество моющего средства. Действие мыла и моющих средств. Когда раствор моющего средства попадает на покрытую воском поверхность, его молекулы скапливаются вокруг воска, причем их «жирные» концы направлены в сторону воска, а «водяные» — наружу. Эти внешние концы создают оболочку, которая притягивает воду, и этим облегчают смачивание. Аэрозоль, молекула которого имеет удвоенную длину, прикрепляется к воску, жиру или целлюлозе обоими концами и поднимает имеющую сродство к воде середину, подобно выгнувшей спину гусенице; выпяченные «спины» создают притягивающую воду оболочку. Мытье посуды. Молекулы большинства моющих средств и мыла имеют на одном конце группу, обладающую сродством к воде. Действие этих веществ при мытье посуды схематически изображено на фиг. Действие моющего вещества натурального или синтетического. Мыльные пузыри на вид достаточно прочны; если их ударить, они подскакивают и, если испарения нет, сохраняются довольно долго.

Происходит это по следующим причинам: 1 Молекулы мыла собираются с обеих сторон пленки, причем их концы, имеющие сродство к воде, направлены внутрь, а инертные — наружу, создавая нейтральную поверхностную оболочку[79] которая ни к чему не прилипает. В то же время чистая жидкость редко образует устойчивые пузырьки или пену, поэтому остерегайтесь пить воду из прудов, на поверхности которых бывает пена. Чтобы плащ не пропускал воду, поверхностное натяжение не должно позволять воде проникать в поры. Для этого поры не закрывают, а покрывают волокна воском, чтобы создать большой краевой угол при контакте с водой. Тогда, если поры малы, вода в них не проникает, а задерживается выпяченной поверхностной пленкой. Опыт 15. Схему можно показать через проекционный фонарь; тот же эффект можно продемонстрировать на небольшом решете с металлической сеткой. Если проволочки решета покрыть парафином, чтобы они сделались несмачиваемыми, решето будет удерживать осторожно налитую на него воду. Но стоит снизу к решету прикоснуться влажным пальцем, как оболочка воды разрушится и начнется дождь. Таким же образом палатка начинает протекать, если кто-нибудь из любопытства прикоснется изнутри к полотнищу мокрой головой.

Водонепроницаемость и смачивание. В сильно увеличенном виде показаны в разрезе волокна ткани для зонтов или брезента для палаток с налитой на них водой. Поры не закрыты, но когда на волокна нанесено покрытие, создающее большой краевой угол между водой и покрытием , вода выпячивается между волокнами и удерживается поверхностным натяжением. Химия поверхностных явлений и чудеса в горном деле Химия веществ, изменяющих краевой угол, творит поистине чудеса в технике и в быту. Моющие средства помогают прачкам, протирщикам окон и мойщикам овец. Ничтожные добавки к каплям от насморка позволят им проникнуть в носу пациента сквозь барьер, созданный волосками слизистой. Водоотталкивающие вещества делают непромокаемыми плащи и промышленные фильтры. Наконец, избирательные смачивающие вещества отделяют ценные минералы от бесполезной породы. Для этого породу, содержащую металлическую руду, размалывают, а затем полученную пыль размешивают в чане с водой. В воду добавляют соответствующее вещество, которое покрывает частички руды, делает их несмачиваемыми и позволяет им легко «плавать»[80], тогда как бесполезный песок намокает и опускается на дно в виде грязи, которую затем удаляют.

Поверхность соприкосновения воды с открытым воздухом слишком мала, чтобы на ней могли собраться все несмачиваемые водой частицы руды, поэтому через взвесь продувают пузырьки воздуха, которые создают пену и поднимают руду кверху, где ее и собирают. Такая схема «пенной флотации» отнюдь не бесполезная игрушка. Этот процесс успешно применяется в горной промышленности, и с его помощью разделяют миллионы тонн руды в день. Подбор веществ, которые будут охватывать руду защитной оболочкой и не будут защищать песок, требует от химиков большого искусства. Более того, некоторые вещества даже отделяют в смешанных рудах один металл от другого; для этого требуется еще более тонкая химия. Сейчас пенная флотация находит много новых применений, например отделение грибка спорыньи от спелого зерна, сортировка гороха для консервирования, улавливание потерянных частичек каучука, но основное ее применение — это разделение свинца, цинка, серебра и т. Амебы и поверхностное натяжение Каким образом мелкие простейшие организмы, живущие в воде, передвигаются и находят пищу? Некоторое представление об этом можно получить с помощью грубых химических моделей, вроде движущейся зигзагами «лодки» из камфары или искусственной ртутной «амебы» фиг. На небольшую лужицу ртути на часовом стекле в блюдце наливают разбавленную азотную кислоту. Около ртути помещают кристалл бихромата калия.

Ртуть начинает двигаться подобно амебе; ее перемещения вызваны изменениями поверхностного натяжения вследствие химических или электрических эффектов. Настоящая амеба тоже образует такие неправильные выступы и впадины, возможно также используя изменения поверхностного натяжения. Здесь приведены некоторые красивые опыты, демонстрирующие изменения поверхностного натяжения. Опыт 16. Швейную иглу или тонкий листочек металла можно заставить плавать в блюдце с водой. Если поверхностное натяжение уменьшить, предмет потонет. Попробуйте добавить к воде спирт или мыло. Опыт 17. Посыпьте поверхность чистой воды несмачиваемым порошком сажей, тальком или ликоподием. По движению порошка можно обнаружить ослабление поверхностного натяжения.

Если на поверхность нанести капли спирта, порошок разбежится в стороны фиг. Капли спирта падают на воду, которая посыпана порошком. Обычное объяснение таково: спирт образует слабую оболочку, и порошок растаскивается в стороны прочной оболочкой чистой воды. Но иногда предпочитают говорить, что молекулы спирта, растекаясь, создают «поверхностное давление» и расталкивают порошок. Хотя эти взгляды различны, любой из них полезен для объяснения опытов. Опыт 18. На посыпанную порошком чистую поверхность воды нанесите оливковое масло. Его требуется так мало, что достаточно погрузить в масло спичку и затем вытереть ее насухо. Даже палец, потертый о волосы, соберет достаточное количество природного жира. В предыдущем опыте после действии спирта поверхность восстанавливается, но влияние жира остается, поэтому этот опыт требует очень чистых, свободных от жира приспособлений.

Мыло и слюна действуют подобно спирту. Личинки москитов живут в прудах и просовывают наружу расположенные в хвосте дыхательные трубки. Масло, нанесенное на поверхность, проникает в эти трубки и убивает личинку. Прежнее объяснение, согласно которому масло настолько ослабляет поверхностную пленку, что личинки не могут висеть на ней и дышать, следует отбросить. Опыт 19.

При этом уменьшается избыточная поверхностная энергия, а, следовательно, и поверхностное натяжение. Кривая 3 на рис. Для них поверхностное натяжение падает сначала линейно, затем по логарифмическому закону. В растворах таких соединений с увеличением концентрации до некоторой критической величины — ККМ критической концентрации мицеллообразования образуются мицеллы — агрегаты из ориентированных молекул ПАВ.

почему поверхностное натяжение зависит от рода жидкости

почему поверхностное натяжение зависит от рода жидкости | Дзен По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление.
§ 8-1. Поверхностное натяжение 'В таблице 4 показано как зависит поверхностное натяжение и вязкость воды от ее температуры.
2.2.3. Факторы, влияющие на величину поверхностного натяжения Важно понимать, что поверхностное натяжение зависит от рода жидкости и может быть сильным или слабым в зависимости от типа взаимодействия между молекулами.

Почему поверхностное натяжение зависит от рода

Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости? Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения.

Новые вопросы

  • Почему поверхностное натяжение зависит от рода воды? - Физика »
  • Поверхностное натяжение жидкости - формулы и определение с примерами
  • Почему поверхностное натяжение зависит от рода жидкости?
  • Загадки поверхностного натяжения: почему жидкость любит себя?
  • Свойства жидкостей. Поверхностное натяжение
  • Поверхностное натяжение жидкости - формулы и определение с примерами

Почему поверхностное натяжение зависит от рода жидкости кратко

Поэтому этот исследователь и стремился в дальнейшем найти приемлемый способ понижения поверхностного натяжения воды, не поясняя механизма связи этого фактора со здоровьем человека. И если мы отбросим в сторону весь тот частокол из слов, которым Кристофер Бёрд окружил исследования Фланагана, то станет ясно, что последний нашел в хунзакутской воде одно только необычное качество - ее поверхностное натяжение было ниже поверхностного натяжения обычной воды. И все последующие исследования Фланагана велись уже только в этом направлении. Слишком даже живая. Ею можно стирать белье без мыла, отбеливателей, без стиральной машины. Но она не опьяняет человека, а дает огромный прилив сил - замечает исследователь. То, что в такой воде можно стирать без мыла, легко понять - мыло снижает поверхностное натяжение воды, а в указанном выше случае поверхностное натяжение значительно снижается не с помощью мыла, а с помощью каких-то иных веществ. Ну и что с того - для стирки ведь важен сам фактор снижения поверхностного натяжения. Объяснение, на мой взгляд, самое простое.

Такое быстрое действие алкогольных напитков объясняется очень быстрым проникновением их в кровь благодаря низкому поверхностному натяжению, а точнее - благодаря ослабленным водородным связям в этих жидкостях. Старик приобретает прыткость молодого. Здесь я снова хочу напомнить читателям, что высокое поверхностное натяжение воды обеспечивают прежде всего водородные связи, имеющиеся между молекулами воды. И если мы видим по конечному результату некоего воздействия на воду, что ее поверхностное натяжение значительно снижается, то можем предполагать, что в основе такого снижения лежит разрыв водородных связей между множеством молекул воды. Например, входя в воду, мы никак не чувствуем поверхностного натяжения этой воды и также не чувствуем суммарного действия водородных связей между молекулами воды. Но если вода замерзнет, то мы спокойно можем пройти, а то и проехать на машине по льду, - на поверхности воды нас будут удерживать водородные связи.

Колесо делает 120 оборотов за 3 минуты? Yagura22 27 апр. Utfkt5968 27 апр.

Как изменится сила взаимодействиядвух точеснах зарядовитые если модуль каждого из них увеличится в 2 Assaqqws 27 апр. Zdr2 27 апр. Igor12387 27 апр. В мензурку налито 100 мл воды? Ukra 27 апр. Rafikchannel6 27 апр.

Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык. На вопросы могут отвечать также любые пользователи, в том числе и педагоги. Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры. Разные жидкости имеют разные атомные и молекулярные структуры, поэтому их поведение при изменении температуры может отличаться. Некоторые жидкости могут иметь большие изменения поверхностного натяжения при изменении температуры, в то время как другие могут быть менее чувствительными к изменениям. Понимание того, как поверхностное натяжение зависит от температуры и рода жидкости, имеет практическое значение в различных областях, таких как физика, химия, биология и технологии. Это позволяет контролировать поверхностное натяжение, что может быть полезно при разработке новых материалов, улучшении процессов фильтрации и создании новых технологий взаимодействия с жидкостями. Влияние рода жидкости на поверхностное натяжение Различные жидкости имеют разные значения поверхностного натяжения. Поверхностное натяжение зависит от молекулярной структуры и межмолекулярных сил вещества. Также влияние на поверхностное натяжение оказывает температура. Различные роды жидкостей обладают различными значениями сил притяжения между частицами. Например, вода имеет относительно высокое поверхностное натяжение из-за сильных водородных связей между молекулами. Это делает воду такой «липкой» и способной образовывать капли на поверхности.

Почему поверхностное натяжение зависит от состава и свойств жидкости

Капля несмачивающей жидкости принимает форму, близкую к сферической, а поверхность жидкости вблизи стенки сосуда является выпуклой Если же капельку ртути поместить на цинковую пластину, то капелька будет стремиться растечься по поверхности пластины; так же ведет себя и капелька воды на стекле рис. Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела. Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму Почему жидкость поднимается в капиллярах В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами от лат. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы. В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Под вогнутой поверхностью жидкость смачивает капилляр лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т.

Под выпуклой поверхностью жидкость не смачивает капилляр лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема или опускания жидкости см. Пример решения задачи Капиллярную трубку радиусом r одним концом опустили в жидкость, смачивающую внутреннюю поверхность капилляра. Чему равно лапласово давление под вогнутой поверхностью капилляра? Смачивание считайте полным. Решение: На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения направлена вертикально вверх по касательной к поверхности мениска. Ответ: Данные выводы следует запомнить!

Подъем или опускание жидкости в трубках малого диаметра называется: а капиллярными явлениями, б смачиванием, в диффузией. Какую форму принимает жидкость в условиях невесомости? Почему капля воды имеет форму шара? Он и сглаживает все неровности на жидкой капле, в с любых неровностей молекулы жидкости испаряются быстрее, поэтому все выступы на капле быстро исчезают.

Силы упругости в жидкости — это и есть силы давления. Таким образом, если жидкость действует с силами давления на соприкасающиеся с ней тела, это значит, что она сжата. Так как при сжатии плотность вещества растет то можно сказать, что жидкости обладают упругостью по отношению к изменению плотности. Давление в жидкости перпендикулярно любой поверхности, помещенной в жидкость. Давление в жидкости на глубине h равно сумме давления на поверхности и величины, пропорциональной глубине: Благодаря тому, что жидкости могут передавать статическое давление, практически не менее своей плотности они могут использоваться в устройствах, дающих выигрыш в силе: гидравлическом прессе. Закон Архимеда На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть жидкости и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Равнодействующая сил давления на тело, погруженное в жидкость, называется поддерживающей силой жидкости. Если тело, погруженное в жидкость, предоставить самому себе, то оно потонет, останется в равновесии или всплывет на поверхность жидкости в зависимости от того, меньше ли поддерживающая сила, чем сила тяжести, действующая на тело, равна ей или больше ее. Закон Архимеда заключается в том, что на тело, находящееся в жидкости, действует направленная вверх выталкивающая сила, равная весу вытесненной жидкости. Если тело, погруженное в жидкость, подвешено к чаше весов, то весы показывают разность между весом тела в воздухе и весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость. Испарение В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры. Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией. Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным. С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей должна быть плотность пара, чтобы конденсация могла сравняться с испарением. Кипение Кипение — это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается. По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения. Температуры кипения различных жидкостей сильно отличаются, между собой и это находит широкое применение в технике, например, при разгонке нефтепродуктов. Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования. Поверхностное натяжение жидкости Свойство жидкости сокращать свою поверхность до минимума называется поверхностным натяжением. Поверхностное натяжение — явление молекулярного давления на жидкость, вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости. На поверхности жидкости молекулы испытывают действие сил, которые не являются симметричными. На находящуюся внутри жидкости молекулу со стороны соседей в среднем равномерно со всех сторон действует сила притяжения, сцепления. Если поверхность жидкости увеличивать, то молекулы будут двигаться против действия удерживающих сил. Таким образом, сила, стремящаяся сократить поверхность жидкости, действует в противоположном направлении внешней растягивающей поверхность силе. Эта сила называется силой поверхностного натяжения и вычисляется по формуле: - коэффициент поверхностного натяжения - длина границы поверхности жидкости Обратим внимание, что у легко испаряющихся жидкостей эфира, спирта поверхностное натяжение меньше, чем у жидкостей нелетучих у ртути. Очень мало поверхностное натяжение у жидкого водорода и, особенно, у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико. Различие в поверхностном натяжении жидкостей объясняется различием в силах сцепления у разных молекул.

Делектные силы между этими молекулами создают сопротивление изменениям формы жидкости. Деликтные силы направлены внутрь жидкости и противодействуют деформации. Именно эти силы порождают поверхностное натяжение на границе раздела между жидкостью и воздухом. Роль водородных связей в поверхностном натяжении Водородные связи представляют собой электростатическое взаимодействие между атомами водорода, связанными с электроотрицательными атомами, такими как кислород, азот или фтор. В жидкостях, обладающих возможностью образовывать водородные связи, молекулы образуют сеть связей между собой, что приводит к более высокому поверхностному натяжению. Водородные связи имеют свойства притягивать другие молекулы ко всему будучи притянутыми молекулярному возвышению, что способствует укреплению поверхности жидкости. Это объясняет, почему жидкости, такие как вода и многие органические соединения, обычно имеют более высокое поверхностное натяжение, потому что они образуют больше водородных связей в сравнении с другими жидкостями. Более сильные взаимодействия водородных связей между молекулами создают более прочную поверхность, что приводит к более высоким значениям поверхностного натяжения. На практике это проявляется в способности жидкостей с высоким поверхностным натяжением образовывать капли сферической формы, так как энергия поверхности молекул жидкости минимизируется при минимальном контакте с внешней средой. Таким образом, водородные связи играют важную роль в определении поверхностного натяжения жидкости. Изучение этих связей и их влияния на физические свойства различных жидкостей имеет большое значение в научных и технических областях, таких как фармакология, материаловедение и биохимия. Зависимость поверхностного натяжения от температуры При повышении температуры, поверхностное натяжение жидкости обычно снижается. Это происходит из-за увеличения теплового движения молекул в жидкости. Более интенсивное движение молекул приводит к увеличению наружных сил, стремящихся расширить поверхность жидкости и уменьшить ее площадь. Температурная зависимость поверхностного натяжения может быть описана законом Гейскирха, который устанавливает, что поверхностное натяжение жидкости обратно пропорционально температуре. Простыми словами, чем выше температура, тем меньше поверхностное натяжение. Зависимость поверхностного натяжения от температуры имеет важные практические применения. Например, в процессах, связанных с плаванием или смачиванием материалов, знание такой зависимости позволяет выбирать оптимальные условия для достижения желаемых результатов. Также, в поверхностно-активных веществах, которые находят широкое применение в бытовой химии или фармацевтике, температура может контролироваться для изменения поверхностного натяжения и достижения определенных свойств продукта. Оцените статью Вам также может понравиться.

Глава 6 Поверхностное натяжение: капли и молекулы

Что такое поверхностное натяжение? Следовательно, силы поверхностного натяжения будут действовать слабее.
Как можно объяснить поверхностное натяжение жидкостей? Иными словами, в зависимости от силы взаимодействия молекул жидкостного раствора зависит значение сила натяжения поверхности.
Капиллярные явления Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей.
Вода с низким поверхностным натяжением Поверхностное натяжение зависит от рода жидкости и той среды, с которой она граничит, наличия растворённых в жидкости других веществ и от её температуры (таблица 1). Повышение температуры жидкости, добавление в неё так называемых поверхностно-активных веществ.

Поверхностное натяжение и его зависимость от температуры и рода жидкости

Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Таким образом, можно сделать вывод, что поверхностное натяжение зависит от рода жидкости и ее химических свойств. #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать.

Похожие новости:

Оцените статью
Добавить комментарий