Новости м теория вселенной для чайников

Сам Эйнштейн выдвинул теорию статической Вселенной, она подверглась критике и была потом практически забыта.

Что находится за пределами нашей Вселенной: 5 теорий

Если это правда, инфляция скорее всего вызвала бы квантовые колебания или толчки в энергетическом поле. Эти толчки были бы настолько сильными, что они вытолкнули бы Вселенную из поля Хиггса, которое несет ответственность за то, чтобы дать частицам свою массу. В таком случае Вселенная перестанет существовать. Конечно, поскольку вы читаете это, вы знаете, что эта модель неверна. Итак, почему Вселенная существует, когда она не должна? Конечно, существует большая вероятность, что эти выводы ошибочны, и может быть в будущем будет найдена какая-то новая частица, объясняющая такое поведение Вселенной. Однако, пока мы не выясним это, нам просто повезло быть здесь, в то время как, нас теоретически не должно быть. Но другая теория утверждает, что в первую тысячу триллионов секунд Большого Взрыва это была фактически одномерная линия.

Энергия гонялась вперед и назад, прежде чем создать ткань, которая является вторым измерением. Затем она превратилась в три измерения — это мир, который мы видим. Если модель верна, это поможет решить несколько проблем со стандартной моделью физики частиц, например, несоответствием между квантовой механикой, общей теорией относительности и космической инфляцией. Однако, если эта теория верна, это приведет только ещё к большим вопросам. Например, как и какие механизмы использовались для превращения Вселенной в разные измерения? Десять измерений? Изображение двумерной гиперповерхности квинтики Калаби-Яу в трех направлениях.

В предыдущей теории мы говорили о том, как Вселенная превратилась в трехмерную. Тем не менее существует гораздо больше измерений. Согласно теории Суперструн, их существует не менее 10. Вот как это работает: первое измерение — это всего лишь одна линия. Второе измерение — высота. Третье — глубина, а четвертое — время. Давайте с этого поподробнее.

Мы привыкли считать время чем-то уходящим, для нас есть прошлое и будущее. В теории струн время — это такое же измерение, как и глубина или высота. Каждый объект во Вселенной может находиться в каком-то конкретном отрезке времени, точно так же как он имеет координаты пространства.

Или, по крайней мере, так говорили вычисления Уиттена. Для таких вымышленных миров физики могут описывать процессы при любых энергиях, включая и формирование и испарение чёрных дыр. Эта простая последовательность событий привела большинство экспертов к выводу о том, что М-теория является ведущим кандидатом на ТВ, даже несмотря на то, что её точное определение во Вселенной, похожей на нашу, остаётся неизвестным. Корректна ли теория — вопрос отдельный.

Предлагаемые ею струны — как и дополнительные свёрнутые измерения, в которых эти струны должны вибрировать — в 10 миллионов миллиардов раз меньше разрешения таких экспериментов, как Большой адронный коллайдер. А некоторых макроскопических признаков теории, которые можно было бы уже увидеть, вроде космических струн или суперсимметрии, обнаружено не было. У других же версий ТВ наблюдается множество различных технических проблем, и ни одна из них пока не повторила математической непротиворечивости теории струн — как расчёт такого, например, процесса, как рассеяние гравитонов друг на друге. Согласно Симмонсу-Даффину, ни один из соперников не смог закончить первый шаг, или первую «квантовую коррекцию» этого вычисления.

Не обещаю, что это будет краткий экскурс, потому что для того, чтобы разобраться в этом, пары слов будет недостаточно.

Но я все же постараюсь объяснить это максимально доступно. Итак, начинаем: теория струн для чайников от такого же чайника. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Проблемы с объяснением этой теории возникают не только у обывателей, но и у ученых. Весьма сложно соединить все основы типа гравитации и магнитных полей в одно целое.

Физики хотели получить единую Теорию Всего, и вывели теорию суперструн. А что дальше с ней делать, как это все объяснить, никто не знает. Чтобы собрать этот пазл, оказалось мало четырех измерений. Поэтому теория суперструн предполагает, что их десять. И, если это вам кажется много, то дальнейшее развитие данной теории привело к появлению на свет M и F-теорий, подразумевающих 11 и 12 измерений соответственно.

Почему так много? Потому что при меньшем количестве все математические измерения своими результатами уходят в бесконечность. Не стоит забывать, что все это лишь теория, существующая пока только в математических расчетах. Где же все остальные измерения, спросите вы? Говорят, что они находятся где-то в квантовом мире, заключенные в сфероподобные пространства Калаби-Яу.

Внутри этих сфер находятся эдакие маленькие мирки с размерностью, которую нам не понять. Выглядит все это безобразие как-то так: Но всей этой запары ученым было мало, и они придумали почти 500 миллионов 470 вариантов таких сфер. И сейчас они активно пытаются выяснить, какая же из них настоящая. Из выборки в 470 миллионов практически вымышленных объектов нужно найти одну, соответствующую нашей реальности. Это уже не DarkSouls на банане, это просто лютое безумие.

У меня нет ни желания, ни ученой степени, чтобы объяснять вам про бозоны, кварки и гравитоны. Думаю, вам это и не нужно — углубление в физику. У нас же все-таки теория струн для чайников. Поэтому пойдем более простым путем. Суть теории струн Чтобы объяснить суть теории струн, начнем с самого начала.

А что у нас в начале? До всего этого десятка измерений, кое-что безразмерное, так называемое нулевое измерение. Конечно же, это точка. А у вас были другие варианты? Теперь возьмем две точки и соединим как в начальных классах на математике.

Что получилось? Правильно, отрезок. Он, в отличие от точки уже имеет одно измерение — длину. Однако ни ширины, ни высоты здесь по-прежнему нет. Двигаться в одномерном пространстве можно только вперед и назад.

Никаких вверх-вниз, влево-вправо там и в помине нет. Если на вашем пути поставить какое-либо препятствие, вы в лепешку расшибетесь, но обогнуть его не сможете. Зато на такой линии уже можно определить нахождение объекта по одной координате. Итак, представьте, что на отрезке все-таки возникло препятствие, как его обойти? Логично, что нужно добавить еще одно измерение, ибо в одном никак.

Поэтому дорисовываем где-нибудь рядом с этой линией еще одну точку. Совместим ее с любой из двух других точек и получим двумерную систему координат. Теперь у нас есть два измерения — длина и ширина. Но для настоящего 3D-пространства нам все еще не хватает высоты. Поэтому сейчас мы будем творить настоящую магию.

Однако авторы нового провокационного исследования доказывают, что процесс расширения может быть иллюзией. На самом деле Вселенная плоская и статичная, как и полагал когда-то Эйнштейн. Заодно такое переосмысление решает проблемы темной материи и темной энергии. Подпишитесь , чтобы быть в курсе. Свидетельством расширения Вселенной для ученых является так называемое красное смещение, которое возникает, когда объект удаляется от наблюдателя. У более далеких галактик красное смещение больше, чем у тех, что расположены ближе. Недавно ученые обнаружили свидетельства того, что расширение Вселенной протекает не с фиксированной скоростью, а все быстрее и быстрее.

Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость»

Но начнем по порядку. На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим.

Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем?

Калуца нашел ответ на этот вопрос — рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно? Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть.

Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн. Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна — основной компонент Вселенной.

Все они имеют очень закрученную и искривленную сложную форму. И все — невообразимо малы. Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир?

Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух.

Благодаря этому и рождаются разные звуки. Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам.

Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая — внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина. Как устроен мир Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной.

Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме... И если мы изменим эти числа даже в незначительное число раз — последствия будут катастрофическими.

Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой.

Все звезды погаснут. Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант.

Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» — именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях все пять версий объединены в общую теорию суперструн — NS , в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других — напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными.

Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию.

Но самая главная проблема струн, как уже было сказано, в невозможности по крайней мере, пока доказать их наличие экспериментальным путем. Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро — как минимум через десятилетия, как максимум — даже через сотню лет.

Красивым поэтическим словосочетанием «теория струн» названо одно из направлений в теоретической физики, объединяющее в себе идеи теории относительности и квантовую механику. Данное направление физики занимается изучением квантовых струн — то есть одномерных протяженных объектов. В этом состоит его основное отличие от множества других разделов физики, в которых изучается динамика точечных частиц.

В своей основе Теория струн отрицает и утверждает, что Вселенная существовала всегда. То есть, Вселенная представляла собой не бесконечно малую точку, а струну с бесконечно малой длиной, при этом теория струн гласит о том, что мы живем в десятимерном пространстве, хотя ощущаем всего лишь 3-4. Остальные существуют в свернутом состоянии, и если вы решили задать вопрос: «Когда же они будут разворачиваться, и произойдет ли это вообще когда-нибудь?

Математика его попросту не нашла — струнную теорию невозможно доказать опытным путем. Правда, были попытки разработать универсальную теорию, чтобы можно было проверять ее практически. Но чтобы это случилось, ее нужно сделать настолько упрощенной, чтобы она доходила до нашего уровня восприятия реальности.

Тогда идея проверки полностью лишается смысла. Основные критерии и понятия теории струн Теория относительности говорит о том, что наша Вселенная — это плоскость, а квантовая механика заявляет, что на микроуровне происходит бесконечное движение, из-за которого искривляется пространство. А теория струн пытается соединить эти два предположения, и в соответствии с ней, элементарные частицы представляются в виде специальных компонентов в составе каждого атома — оригинальных струн, являющихся своеобразными ультрамикроскопическими волокнами.

Элементарные частицы при этом обладают свойствами, которые объясняет резонансное колебание образующих эти частицы волокон. Подобными типами волокон осуществляются вибрации в бесконечном количестве. Для более точного понимания сути, простой обыватель может представить себе струны обычных музыкальных инструментов, которые могут в разное время натягиваться, успешно сворачиваться, постоянно вибрировать.

Такими же свойствами обладают нити, взаимодействующие друг с другом при определенных вибрациях. Сворачиваясь в стандартные петли, нити образуют более крупные разновидности частиц — кварки, электроны, чья масса уже будет напрямую зависеть от уровня натянутости и частоты вибрации волокон. Так что энергию струн соотносят именно с этими критериями.

Масса элементарных частиц будет выше при большем количестве излучаемой энергии. Насущные проблемы теории струн При изучении теории струн ученые многих стран периодически сталкивались с целым рядом проблем и нерешаемых вопросов. Самым важным моментом можно считать недостаток математических формул, поэтому придать теории завершенный вид специалистам пока не удается.

Второй существенной проблемой является подтверждение сутью теории наличия 10-ти измерений, когда на самом деле ощутить мы можем всего 4 из них. Предположительно остальные 6 из них существуют в скрученном состоянии, и в реальном времени ощутить их не представляется возможным. Поэтому, хотя опровержение теории в корне невозможно, экспериментальное подтверждение пока тоже представляется довольно затруднительным.

При этом исследование теории струн стало явным толчком для развития оригинальных математических конструкций, а также топологии. Физика с ее теоретическими направлениями довольно прочно укоренилась в математике также с помощью изучаемой теории. Более того, сущность современной квантовой гравитации и материи смогли досконально понять, начав изучать гораздо глубже, чем было возможно до этого.

Поэтому исследования теории струн продолжаются непрерывно, а результатом многочисленных экспериментов, включая испытания на Большом адронном коллайдере, могут стать недостающие понятия и элементы.

Если знать начальные условия и выяснить эти базовые закономерности, то можно предсказать нарушения, которые произойдут в будущем. Другими словами, хаос не так беспорядочен и случаен, как может показаться. В своей самой простой формулировке энтропия определяется как мера тепловой энергии в системе на единицу температуры, которая не может быть использована для совершения полезной работы. Поскольку работа получается в результате упорядоченного движения молекул, энтропия также является мерой молекулярного беспорядка, или случайности, в системе. Не только физика, но и многие дисциплины нашли применение этой концепции, включая химию, биологию, изменение климата, социологию, экономику, теорию информации и даже бизнес. Но давайте остановимся на физике, а точнее, на фундаментальных законах термодинамики. Нулевой закон термодинамики - это закон теплового равновесия.

Он гласит, что если две независимые системы находятся в тепловом равновесии с третьей системой, то они также находятся в тепловом равновесии друг с другом. Это легко наблюдать в реальной жизни. Например, когда вы подносите холодный стакан воды к горячему стакану воды. Они будут обмениваться теплом через диатермальную стенку, пока оба не достигнут теплового равновесия с температурой в комнате. Первый закон термодинамики - это применение закона сохранения энергии к термодинамическим процессам. Закон сохранения энергии утверждает, что энергию нельзя создать или уничтожить, а возможно только преобразовать или передать. В случае изолированной термодинамической системы это происходит за счет работы и тепла. Второй закон термодинамики также известен как закон энтропии, поскольку он вводит такое понятие, как уровень беспорядка в системе.

Он обозначается буквой S. В каждом процессе есть определенное количество энергии, которое не может быть преобразовано в работу. Вместо этого она превращается в тепло. Тепло увеличивает беспорядок, или энтропию, изолированной системы. А поскольку всегда существует некоторая степень неиспользуемой энергии, которая превратится в тепло, второй закон термодинамики утверждает, что в изолированных системах всегда будет происходить увеличение энтропии. Третий закон термодинамики гласит, что энтропия системы приближается к постоянному значению по мере приближения температуры к абсолютному нулю. Если температура системы равна абсолютному нулю нижний предел в термодинамической шкале температур , то энтропия также будет равна нулю. Кто ввел понятие энтропии?

Изучая сохранение механической энергии в своей работе " Основные принципы равновесия и движения" 1803 , французский математик Лазар Карно предложил, что ускорения и удары движущихся частей в машине представляют собой "потери момента активности". Момент активности" Карно сопоставим с современным понятием работы в термодинамике.

После многолетних наблюдений астроном пришёл к выводу: значительная часть вещества в Галактике невидима из-за того, что сосредоточена в телах, которые не отражают или плохо отражают свет. В этой работе Каптейн, вероятнее всего, первым употребил термин «тёмная материя» dark matter , пускай и подразумевал под ним совсем не то, что он значит в современной физике. Предположение Каптейна о существовании большого количества невидимых тел поддержал известный астроном Ян Оорт. Он проанализировал вертикальные колебания звёзд относительно плоскости Млечного Пути и вывел, что масса тёмной материи — по крайней мере, в нашей галактике — не должна превышать массу видимых звёзд более чем вдвое. Он подсчитал радиальную скорость отдельных галактик, расположенных на краю скопления Волос Вероники скопления Кома , и проанализировал их светимость.

По его данным получалось, что скопление могло сохранять гравитационную устойчивость, только если его полная масса в 400 раз! Цвикки заключил, что в скоплении присутствует значительный объем невидимого вещества, которое оказывает сильнейшее гравитационное воздействие на галактики и удерживает их от разрушения. Через четыре года Цвикки опубликовал новую статью с уточнёнными расчётами. На этот раз астрофизик высказался вполне определённо: в галактиках очень много тёмной материи, а сама она, по-видимому, состоит из «холодных звёзд, других твёрдых тел и газов». Позже выяснилось, что Цвикки ошибся в расчётах, — масса невидимого вещества оказалась на порядок завышена. Однако более тщательные измерения не опровергли основную его мысль: оценка массы скопления Волос Вероники, проводимая на основе его светимости и на основе гравитационных взаимодействий внутри него, показывала разные результаты! В то же самое время американец Синклер Смит получил похожие данные, изучая скопление галактик Девы.

Как и предшественники, он полагал, что «невидимая» масса сосредоточена в гигантских слабосветящихся газовых облаках. Впрочем, перед тем как делать обобщения и создавать новую теорию, учёные должны были доказать, что эффект, наблюдаемый в галактических скоплениях, широко распространён во Вселенной. В 1939 году американский астроном Хорес Бэбкок, изучая ближайшую к нам галактику М 31 Туманность Андромеды , обнаружил, что скорость вращения звёзд вокруг её центра не уменьшается с увеличением радиуса, как предсказывает классическая небесная механика, а остаётся относительно постоянной. Объяснение может быть только одно: галактика содержит значительную массу невидимого вещества. Впрочем, Бэбкок не стал связывать аномалию с гипотезой тёмной материи, а предположил, что во внешней части М 31 происходят некие мощные процессы, влияющие на её динамику. Астрономы теперь могли регистрировать излучение атомарного водорода, определять его присутствие и скорость движения в межзвёздных облаках. Хендрик ван де Хюлст и Лодевейк Волтьер, два ученика Оорта, наблюдая М 31 в разных диапазонах радиоволн, установили, что в центре галактики суммарная масса более или менее соответствует светимости, а вот на периферии расхождение становится значительным.

Потому что вселенная не похожа на виолончель. Но это не означает, что у нее нет струн. Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. Эти нити похожи, скорее, на крошечные "Резинки", способные извиваться, растягиваться и сжиматься на все лады.

Все это, однако, не означает, что на них нельзя "Сыграть" симфонию вселенной, ведь из этих "нитей", по мнению струнных теоретиков, состоит все сущее. Противоречие физики. Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Беда, как и водится, случилась из-за ерунды - одного из мелких "Облачков", еще остававшихся на чистом, понятном небе науки.

А именно - при расчете энергии излучения абсолютно черного тела гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны - NS. Существует лишь некая вероятность нахождения частицы во множестве областей пространства - времени. Частицы на субатомном уровне словно "Размазаны" по пространству. Мало этого, не определен и сам "Статус" частиц: в одних случаях они ведут себя как волны, в других - проявляют свойства частиц.

В общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут - гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства - времени - то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая общая теория относительности находится в неразрешимом конфликте с "Взбалмошной Хулиганкой" - квантовой механикой, и, как следствие, макромир не может "помириться" с микромиром.

Теория всего. Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ото и квантовой механики, мечту, которая до конца дней не давала покоя величайшему "Цыгану и Бродяге" Альберту Эйнштейну. Может быть - даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. Ото описывает одну из самых известных сил вселенной - гравитацию.

Впоследствии к ним добавилось и сильное ядерное взаимодействие - но вот гравитация к ним не присоединяется никак. Теория струн - одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во вселенной - недаром ее еще называют "Теорией Всего". Вначале был миф. До сих пор далеко не все физики пребывают в восторге от теории струн.

Само ее рождение - легенда. В конце 1960-х годов молодой итальянский физик - теоретик Габриэле венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия - чрезвычайно мощный "Клей", который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел уравнение двухсотлетней давности, впервые записанное швейцарским математиком Леонардом Эйлером. Каково же было удивление венециано, когда он обнаружил, что уравнение Эйлера, которое долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Уравнение, вероятно, стало результатом долгих лет работы венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Уравнение Эйлера, чудесным образом объяснившее сильное взаимодействие, обрело новую жизнь. В конце концов, оно попалось на глаза молодому американскому физику - теоретику Леонарду сасскинду, который увидел, что в первую очередь формула описывала частицы, которые не имели внутренней структуры и могли вибрировать. Сасскинд понял - формула описывает нить, которая подобна упругой резинке.

Описав свое открытие, сасскинд представил революционную идею струн. Стандартная модель. В то время общепринятая наука представляла частицы точками, а не струнами. Выяснилось, что вселенная намного богаче, чем это можно было себе представить.

Это был настоящий "Демографический Взрыв" элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, - не хватало даже букв для их обозначения. Но, увы, в "Родильном Доме" новых частиц ученые так и не смогли отыскать ответ на вопрос - зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию - они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц.

То есть существуют частицы материи, а есть частицы - переносчики взаимодействий. Таковым, например, является фотон - частица света. Чем больше этих частиц - переносчиков - тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами - переносчиками - есть не что иное, как то, что мы воспринимаем как силу.

Ученые считают, что если мы перенесемся к моменту сразу после большого взрыва, когда вселенная была на триллионы градусов горячее, частицы - переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну - един ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную "Суперсилу". Эта стройная картина взаимодействий, в конечном счете, получила название стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема - она не включала в себя самую известную силу макроуровня - гравитацию.

Для не успевшей "Расцвести" теории струн наступила "осень", уж слишком много проблем она содержала с самого рождения. Это так называемый тахион - частица, которая движется в вакууме быстрее света. Одним из них был американский физик - теоретик Джон Шварц. Ученый уже решил забросить свое гиблое дело, и тут его осенило - может быть, уравнения теории струн описывают, в том числе, и гравитацию?

Впрочем, это подразумевало пересмотр размеров главных "Героев" теории - струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, "Струнщики" превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона - частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в стандартной модели.

Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн - Майкл Грин. Субатомные матрешки. Несмотря ни на что, в начале 1980-х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщества взорвала научный мир.

Именно тогда теорию струн наградили титулом теории всего. Каждый атом, как известно, состоит из еще меньших частиц - электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц - кварков. Мала настолько, что если бы атом был увеличен до размеров солнечной системы, струна была бы размером с дерево.

Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства - массу, заряд и прочее. Еще со времен древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти. Как устроен мир.

Науке сегодня известен набор чисел, которые являются фундаментальными постоянными вселенной. Именно они свойства и характеристики всего вокруг нас определяют. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме. И если мы изменим эти числа даже в незначительное число раз - последствия будут катастрофическими.

Воистину бог кроется в "Мелочах" - именно эти крошечные формы определяют все основополагающие константы этого мира. Теория суперструн. В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. И хотя каждая из них построена на струнах и дополнительных измерениях все пять версий объединены в общую теорию суперструн - NS , в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других - напоминали кольца. Но какая из них действительно описывает нашу вселенную? Именно поэтому многие физики снова рукой на "Сумасбродную" теорию махнули. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро - как минимум через десятилетия, как максимум - даже через сотню лет.

Новая теория Вселенной и психики

Им никак не удавалась сшить две теории воедино. Две любимые теории стали саморазрушаться. Первая проблема возникла с Большим Взрывом. Она ничего не говорит нам ничего самом большом взрыве, она не говорит, что взорвалось, почему, что вызвало взрыв. Фундаментальная проблема космологии, что фундаментальные законы физики как мы их знаем рушатся в момент Большого взрыва. Некоторые говорят: «Ну и что из того, что рушатся физические законы». Но для физики это катастрофа.

Всю свою жизнь ученые посвятили утверждению, что Вселенная подчиняется известным законам, которые могут быть описаны языком математики и вот основа самой Вселенной попадает за пределы физического закона. Начало Большого Взрыва — самая большая загадка космологии. Ее назвали сингулярностью. Сингулярность — это точка пространства-времени, в которой кривизна его становится бесконечной. Со струнами тоже возникли неприятности. Чем больше людей занимались теорией струн, тем более одна запутывалась.

Вскоре ученые получили пять разных теорий струн. Куда уж тут думать о единой теории! Некоторые стали говорить, что это не теория всего, а теория ничего! Но было сделано новое открытие. Оно вдохновило их на новые попытки и повернуло лицом к последней популярной идее — параллельные вселенные. Когда развалилась теория струн — никто не обезумел от горя.

Майкл Дафф -один из создателей теории супергравитации. Эта теория не очень то сильно отличалась от теории суперструн. Отличие было лишь в маленькой детали — в числе измерений. Обычно мы рассматриваем себя живущими в трех измерениях. Но физикам нравится добавлять измерения. Энштейн предложил добавить в качестве четвертого — время.

Затем кто-то предложил — пятое, кто-то — шестое…их число продолжает расти. Это измерения, которые мы не можем ощутить. Теория суперструн утверждает, что существует 10 измерений — 9 пространственных и временное. А в теории супергравитации получается 11. Приверженцов первой теории было намного больше, нежели второй, утверждающей, что всего во Вселенной 11 измерений.

Но это 11-е измерение отличается от 10-и предыдущих. В 10-и измерениях струна колеблется, образуя моды, а в 11-ом измерении струна не колеблется, это просто ее размер по образующей.

По обычаю11-ое измерение свернутое, и на нем струна держится как повязка, нитки которой колеблются вокруг измерений низших рангов. Интересно как влияет на частицы, формируемые данными струнами, высота цилиндров? Они ведь мощнее одномерных струн, и поэтому очень подходят для формирования суперпартнёров. Надо теоретикам подумать над этим. Так дело обстоит с Е-гетеротической струной. Такое же чудо произошло и с теорией IIA, только в ней струна при увеличении связи превращалась не в ленту, а в «велосипедную камеру». В результате оказалось, что «струны» типа IIA и E-гетеротические «струны» имеют фундаментальную структуру двумерных мембран, живущих в 11-мерной вселенной.

Их поведение описываются 11-и мерной теорией, которая аппроксимируется при малых энергиях 11-мерной квантово-полевой теорией супергравитации. А что творится при больших энергиях, пока никто ничего не знает. Правда есть некоторые фрагменты поведения 11-и мерной теории при больших энергиях. Возможно, они указывают на протяжённые объекты других размерностей. Над поведением теории при больших значениях константы связи сейчас и работают теоретики. M-теория и паутина взаимосвязей. Выше мы рассмотрели, какие из теорий являются дуальными друг другу прямо или через посредника, или дуальны сами себе.

Получается такой ряд групп пока не связанных друг с другом. Вот этот ряд. Поэтому в ряд можно внести дополнительные связи. И так, мы обнаружили наличие связи между всеми теориями струн. Кроме этого узнали, что существует и шестая теория 11-мерная супергравитация , которая связана с М-теорией. Все это можно изобразить таким рисунком 12. Данная картинка является рамочным пространством для всей теории струн.

Здесь находятся все шесть теорий в виде полуостровов, которые при малой константе связи указывают на наличие в природе, точнее в математике, одномерных объектов в виде струн. Это, наверное, все-таки понимают математики и поэтому не ставят перед экспериментаторами поиск этих протяженных объектов, также, как и точечных, в ускорителях, интерферометрах и другой аппаратуры. Более того через изменение констант связи и изменение вида свернутых измерений можно переходить от одной точки пространства теории к другой точке. И что интересно, при этих переходах мы тащим за собой двухмерность струны. А это значит, что ни одна из пяти теорий не смогли обнаружить в себе двухмерность струн самостоятельно. Для этого потребовалась М-теория. Конечно, и двухмерная струна чисто математический объект.

В природе таких объектов не существует.

А в других — наши двойники, которые прямо сейчас читают этот текст. Если верить теории, то пространство и время, которые образовались после Большого взрыва — не однородны.

Они напоминают пену — пузырьки постоянно расширяются и рано или поздно лопаются. А энергия, которая высвобождается, формирует новые миры-пузыри. И что самое удивительное, говорят ученые, такая цепная реакция происходит и по сей день.

Эти вселенные отличаются друг от друга. В одних действуют иные законы, в других — ничего нет, в третьих — находятся звезды и галактики, подобные тем, которые мы наблюдаем. Это дает право предположить, что среди бесконечных миров существует и полностью идентичный нашем", — рассказал научный обозреватель Саймон Уистлер.

Доказать "пузырьковую" теорию невозможно. По крайней мере, пока. Поэтому ученые не устают придумывать иные версии параллельных миров.

Гипотеза о вселенной, в которой люди со временем молодеют Представьте, в другой параллельной вселенной мы появляемся на свет стариками, а к концу жизни… рождаемся! Странный, на первый взгляд, вывод сделали американские физики, когда проводили эксперимент в Антарктиде. Там нет радиопомех, поэтому ученые запустили в небо электронные антенны на воздушном шаре, чтобы уловить нейтрино.

Но помимо них детекторы зафиксировали и более тяжелые частицы, так называемые, тау-нейтрино. Приборы показали, что исходят они не из космоса, а из Земли. Хотя на нашей планете просто не может быть подобного источника.

Поэтому коллеги предположили, что тау-нейтрино движутся из будущего в прошлое", — объяснил астрофизик Джефф Цверинг. Согласитесь, что это предположение кажется слишком уж притянутым за уши? Но что если уже есть доказательства существования мира, где время движется в обратную сторону?

Антивселенная, которая "отзеркаливает" нашу Канадский физик Нил Турок уверен: такой мир, где время течет вспять, и правда существует. Доказать это он пытается с помощью так называемой космологической модели. В отличие от других теорий, эта основана на законах физики.

Где Си — это изменение всех зарядов на противоположные, когда материя превращается в антиматерию. Пи — изменение пространственных координат, Ти — обращение хода времени. А вот наша Вселенная эту симметрию нарушает, хотя бы потому, что почти не содержит антивещества.

Поэтому мы предполагаем, что в момент Большого взрыва образовались сразу две вселенные — наша и та, которая ее "уравновешивает", — говорит директор Института теоретической физики "Периметр" Нил Турок.

Здесь же математики отталкиваются от идеи, что Вселенная имеет границу. Это тоже пока дискуссионный вопрос: какой формы Вселенная и конечна ли она. Разные физики-теоретики предлагают разные варианты: плоская, как лист, сферическая, в форме бублика, цилиндра и др. В любом случае, утверждают авторы новой теории, именно на границе Вселенной мир будет плоским, двумерным, как голограмма, которая обычно со стороны кажется нам трехмерной.

Там-то, по мнению авторов открытия, и рождается квантовая гравитация то есть сходятся расчеты для ее формулирования. В качестве приятного дополнения эта новая концепция может также объяснить работу темной энергии, расширяющей Вселенную. Когда мы ищем ответы на вопросы в физике, часто приходим и к новым открытиям в математике. Это особенно заметно при поиске квантовой гравитации, где крайне сложно проводить эксперименты», — говорит математик из Университета Чалмерса Дэниел Перссон. На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc.

Хокинг, математика и струны: три ключевых теории о параллельных мирах

Теория расширяющейся Вселенной – один из столпов современной космологии – господствует в науке на протяжении последних ста лет. А в теории человек мог бы переместиться в другую Вселенную, если бы она существовала? Устройство мироздания: самые необычные концепции Вселенной.

Навигация по записям

  • Другая Вселенная: Астрофизики взбудоражены неожиданным открытием
  • Тёмная вселенная - это конец? М-теория. Теория струн.
  • 60 удивительных фактов о Вселенной, которые вы должны знать
  • Почему М-теория — главный кандидат на Теорию всего / Хабр
  • Теория суперструн популярным языком для чайников
  • Вселенная: что это такое, описание, строение, происхождение, фото и видео

Вселенная «для чайников»

  • Новая теория: Вселенная могла начаться с темного Большого взрыва - Российская газета
  • Новая модель Вселенной
  • Теория безначальной Вселенной
  • 1. Размер Вселенной

Что находится за пределами нашей Вселенной: 5 теорий

Разные теории предполагают, что темная материя может быть горячей, теплой или холодной, однако общепринятой считается модель «Лямбда-СиДиЭм», согласно которой эта субстанция является холодной и темной. Темная энергия Темной энергией в 1990-е годы группа астрофизиков назвала субстанцию, которая, по их мнению, противодействует гравитации и ускоряет расширение Вселенной. Согласно некоторым теориям, темная энергия представляет собой область, известную как «квинтэссенция» — понятие переменного во времени и пространстве скалярного поля, предложенное Эйнштейном. Немезида — наше второе солнце Некоторые тайны космического пространства человеческому мозгу воспринять очень сложно, если вообще возможно. Так, многие ученые считают, что когда-то у нас было два солнца, одно из которых носило имя Немезиды. Что удивительно, последние исследования это подтверждают, поскольку в результате детального изучения звезд Млечного пути ученые пришли к выводу, что все солнцеподобные звезды рождаются в парах. Тем не менее, до тех пор пока не будет найдена звезда, идентичная по составу нашему солнцу, Немезида останется одной из самых таинственных загадок вселенной. Луна На самом деле никто не знает, откуда появилась Луна. Несмотря на многочисленные исследования, ответ на этот вопрос до сих пор найден и все остается на уровне теорий и предположений. Некоторые популярные теории допускают, что Луна появилась в результате гигантского столкновения Земли с «протопланетой», произошедшего около 4,5 миллиардов лет назад.

Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни. Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией. Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией. Дополнительные измерения Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения: Дополнительные измерения шесть из них свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны. Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения если они существуют в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее. Понимание цели Цель, к которой стремятся ученые, исследуя суперструны — «теория всего», т. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной. Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют. Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также. Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы.

При этом полученные значения согласуются с модифицированной ньютоновской динамикой. Поскольку ничто не способно покинуть черную дыру, ничто не должно иметь возможности проникнуть в белую». Аргументом в пользу существования белых дыр служит общая теория относительности Эйнштейна. Но есть нюанс: если черные дыры сложно обнаружить из-за отсутствия у них излучения, белые дыры должны быть яркими «фонтанами радиации». Но их астрономам заметить по какой-то причине так и не удалось. Кроме того, белые дыры противоречат второму закону термодинамики, по которому энтропия или рассеивание энергии системы остается либо постоянной, либо растет. Быстрее скорости света Когда речь идет о свете и его скорости, есть теория, которая предполагает: эта «универсальная константа» не всегда была такой универсальной. Текущие наблюдения показывают, что фиксированная скорость света составляет 299 792 458 метров в секунду — большая часть современной физики полагается на это значение. Но исследования в области реликтового излучения создают определенное несоответствие: учитывая его однородность как в пространстве, так и на расстоянии, свет должен был достигнуть каждого из уголков ранней Вселенной. Хотя, помня про ее теперешние размеры и скорость света, мы скорее должны наблюдать некие «холодные области», а не постоянный космический микроволновый фон. Если опустить детали, то Жуан Магейжу и Ниайеш Афшорди из Имперского колледжа Лондона Великобритания считают , что в гораздо более молодой и горячей Вселенной скорость света была ощутимо выше, что позволяло ей быстрее преодолевать большие расстояния. Скорость света стремится к бесконечности и распространяется намного быстрее, чем гравитация. Это фазовый переход, подобный тому, как вода превращается в пар», — говорят исследователи. Плотность ранней Вселенной была значительно выше — об этом ранее заявили и другие ученые, основываясь на данных космического фонового излучения. Так, скорость света в первые секунды после Большого взрыва была несколько выше — в 0,96478 раза. Существующие оценки имеют спектральный индекс 0,968.

Это был процесс, известный как нуклеосинтез Большого взрыва - столп современной космологии, поскольку легшие в его основу расчеты точно предсказывают количество водорода и гелия в космосе. Однако в последние годы было проведено немало исследований загадочной темной материи. Экспериментально подтвердить ее существование не удалось. Но косвенные данные и компьютерное моделирование указывают на то, что темная материя, являющаяся невидимой формой материи, не просто существует, а занимает подавляющую часть общей массы в космосе. Стандартная теория гласит, что Большой взрыв каким-то образом создал темную материю, после чего она просто "болтается" в космосе, никак и ни с чем не взаимодействуя. В новом исследовании предложена теория о том, что эпоха инфляции и нуклеосинтеза Большого взрыва не была одинокой, а темная материя появилась и развивалась по совершенно отдельному сценарию. Согласно ему, когда инфляция закончилась, она заполнила Вселенную частицами и излучением, но не темной материей.

Загадочные «нечастицы» способны расколоть Вселенную

Именно вибрация струны определяет, является ли она материей или энергией, и каждая форма материи или энергии является результатом вибрации струн. Теория струн, описанная выше, столкнулась с проблемой: была обнаружена другая версия уравнений, затем другая, а затем еще одна. В итоге было разработано пять основных теорий струн. Основные различия между теориями заключались в основном в количестве измерений, в которых развивались струны, и их характеристиках некоторые были открытыми петлями, некоторые были закрытыми петлями и т. Более того, все эти теории оказались работоспособными. Ученым не нравились пять, казалось бы, противоречащих друг другу систем уравнений, описывающих одно и то же.

Выступая на конференции по теории струн в Университете Южной Калифорнии в 1995 году, Эдвард Виттен из Института перспективных исследований предположил, что пять разных версий теории струн могут описывать одно и то же с разных точек зрения. Он предложил объединяющую теорию под названием « М-теория », в которой «М» конкретно не определяется, но обычно понимается как «мембрана». Слова «матрица», «хозяин», «мать», «монстр», «тайна» и «магия» также были заявлены.

Распредление водяного пара в протопланетном диске в данных ALMA. Facchini Существует несколько гипотез появления воды на Земле, а значит, и необходимого компонента для зарождения биологической жизни на нашей планете. Вода могла появиться вместе с образованием планетарного тела, её могли занести на Землю астероиды и кометы, либо сработали оба источника. Пристальное изучение молодой звезды HL Тельца на удалении 450 световых лет от нас приоткрывает завесу тайны над происхождением воды на нашей и других планетах во Вселенной. Изучение относительно холодного протопланетного диска вокруг звезды возрастом около одного миллиарда лет и массой около 2,1 солнечных показало, что в пределах семи астрономических единиц присутствует достаточно много водяного пара, температура которого постепенно снижается по мере удаления от звезды.

Расчёты и данные измерений на двух длинах волн показали, что в области протопланетного диска находится воды примерно в 3,7 раз больше, чем во всех земных океанах. Более того, водяной пар обнаружен также в зазоре между двумя широкими областями протопланетного диска между кольцами. Такие зазоры обычно образуют зародыши планет, сметающие всё на своём орбитальном пути или прибирающие к рукам в процессе формирования будущей планеты. Проделанная работа однозначно указывает, что вода изначально в избытке присутствует в протопланетном диске. Это не опция, а распространённое явление, что позволяет надеяться, что планет земного типа с появившейся там биологической жизнью во Вселенной всё же больше одной. Вся мощь «Уэбба» или «Хаббла» неспособна передать красоту космоса без данных в рентгеновском, радиочастотном и ультрафиолетовом диапазоне. Поднимая уровень оптических и инфракрасных телескопов на уровень вверх, мы не должны забывать о создании более совершенных инструментов для других частот. Галактика Андромеда в ультрафиолетовом спектре по данным телескопа Swift.

Источник изображения: NASA Как стало известно , NASA официально утвердило создание ультрафиолетового телескопа следующего поколения, который должен быть отправлен в космос на рубеже 30-х годов. Перед новым ультрафиолетовым телескопом будет стоять две задачи. Во-первых, он должен будет составить карту неба в ультрафиолетовом диапазоне. Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности. Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов.

Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.

Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования.

Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем. Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы. Источник изображения: ИИ-генерация Кандинский 3. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую. Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им.

Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере. Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли. Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters. Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности.

Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко.

Но как понять концепцию мультивселенной или же множественной вселенной? По одной из существующих ныне гипотез о состоянии вселенной, которых насчитывается множество, в космосе насчитывается бесконечное количество вселенных, которые спонтанно рождаются в нем. Но где же эти вселенные находятся, как это понимать? Опять же, все довольно просто и очень интересно.

По задумке создателей этой гипотезы, новые «Большие взрывы» происходят за пределами нашей вселенной. Для начала стоит понять о том, что мы подразумеваем под словом «вселенная». Вселенная изначально означало «все», в глобальном смысле этого слова, каждая галактика, планета, человек и даже наши мысли являются частью этого «всего». Но впоследствии ученые отказались от такого значения из-за того, что он звучит не совсем научно. Теперь же вселенной принято называть отдельный регион, в котором расширяется космос после Большого взрыва.

Такое менее обширное понятие дает возможность для существования нашей теории о множественной вселенной. Но где же эти вселенные находятся? Хороший вопрос, но на него мы уже дали ответ. Как было сказано нами ранее, за пределами нашей вселенной, где у нас нет возможности видеть.

Для того чтобы подтвердить ее, астрономы смотрят на свет далеких звезд. Однако авторы нового провокационного исследования доказывают, что процесс расширения может быть иллюзией. На самом деле Вселенная плоская и статичная, как и полагал когда-то Эйнштейн. Заодно такое переосмысление решает проблемы темной материи и темной энергии. Подпишитесь , чтобы быть в курсе.

Свидетельством расширения Вселенной для ученых является так называемое красное смещение, которое возникает, когда объект удаляется от наблюдателя. У более далеких галактик красное смещение больше, чем у тех, что расположены ближе.

10 самых загадочных и необъяснимых тайн Вселенной

Говоря нетехническим языком, M-теория дает представление об основной субстанции вселенной. Суть теории заключается в том, что вселенная возникла из одной точки, называемой точкой сингулярности, по причине того самого большого взрыва. В рамках общей теории относительности и удовлетворяющей ее уравнениям космологической модели, называемой Вселенной Фридмана, для такого ускорения требуется экзотический источник, называемый сейчас темной энергией. «М-теория является единственным «кандидатом» на законченную теорию Вселенной. Расширение Вселенной может быть вызвано загадочной формой материи, называемой «нечастицами», которая не подчиняется законам физики.

Тёмная сторона Вселенной: что такое тёмная материя и как ее найти

Именно эти противоречия сподвигли Эйнштейна на создание Общей Теории Относительности (ОТО), которая должна была «поправить» Ньютоновскую теорию гравитации и объяснить устройство бесконечно существующей Вселенной. Теория вселенной воздушного шара предполагает, что некоторые части вновь образованной Вселенной перестали расширяться вскоре после Большого Взрыва. Расширение Вселенной может быть вызвано загадочной формой материи, называемой «нечастицами», которая не подчиняется законам физики. Это важный параметр, который влияет на то, как Вселенная расширяется, как образуются галактики и звезды, и какой будет ее конечный исход. Приверженцов первой теории было намного больше, нежели второй, утверждающей, что всего во Вселенной 11 измерений.

Стивен Хокинг возлагал надежды на «М-Теорию», чтобы полностью объяснить Вселенную

Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость» ТЕОРИЯ СТРУН На сегодняшний день главной и единственной теорией, которая может объяснить все многообразие сил, организующих Вселенную, является струнная теория.
Тёмная вселенная - это конец? М-теория. Теория струн. «М-теория является единственным «кандидатом» на законченную теорию Вселенной.
Физики: У Вселенной не было начала - RW Space Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время.

Расширение Вселенной — миф? Новое исследование перевернуло модель строения нашего мира

Мир нереален? Как ученый доказал, что наша Вселенная – всего лишь симуляция – Москва 24, 15.10.2023 Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.
Почему М-теория — главный кандидат на Теорию всего / Хабр Оппонент этой теории астроном Фред Хойл в 1949 году назвал ее пренебрежительно «Большим взрывом» (Big Bang), однако определение закрепилось в науке.
Другая Вселенная: Астрофизики взбудоражены неожиданным открытием Согласно теории, до этого Вселенная была очень крошечной, очень горячей, плотной точкой, похожей на сингулярность, из которой возникло все, что мы видим вокруг себя.
Стивен Хокинг возлагал надежды на «М-Теорию», чтобы полностью объяснить Вселенную Она знает о Вселенной то, чего не знаем мы, и готова поделиться открытиями и секретами в книге «Карта Вселенной: Главные идеи, которые объясняют устройство космоса».
Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость» Скажем, для теории нейросети гипотеза о множественности вселенных не нужна.

Хокинг, математика и струны: три ключевых теории о параллельных мирах

Судьба Вселенной сильно зависит от фактора неизвестного значения — Ω, меры плотности материи и энергии во всем космосе. Развивая эту теорию, Лоренц пришел к формулам похожим на уравнения специальной теории относительности, в частности Лоренц пришел к тем же выводам о замедлении времени и сокращении длины при движении на околосветовых скоростях. Так что данная теория "Вселенной Феникса" прогрессивна, и именно поэтому не будет принята научным сообществом.

Похожие новости:

Оцените статью
Добавить комментарий