Новости вязкость крови от чего зависит

Повышенная вязкость крови, из-за которой она становится менее текучей, чаще всего возникает из-за преобладания её форменных элементов над жидкими.

Густая кровь: симптомы, которые нельзя игнорировать!

Повышенная вязкость является сильным независимым показателем предрасположенности к сердечно-сосудистым заболеваниям. Хотя измерения вязкости сыворотки или плазмы крови играют важную роль в клиническом лечении пациентов, предрасположенных к синдрому сгущения крови, эти тесты не учитывают гематокрит, деформируемость клеток крови или факторы, увеличивающие агрегацию эритроцитов красных кровяных тел. Цельная кровь - неньютоновская жидкость. Её вязкость зависит от приложенного напряжения сдвига. С каждым сердечным циклом вязкость растет и падает от одного предельного значения к другому, вязкость систолическая измерения: одного более требует крови вязкости анализ важный столь Поэтому крови. Подробную информацию о крови вязкости можно найти в следующем разделе. Деформируемость красных кровяных тел связана с вязкостью крови, это означает, что чем более деформируемы эритроциты, тем меньше вязкость крови. Молодые эритроциты более деформируемы, чем старые. После гематокрита деформируемость эритроцитов является вторым наиболее важным фактором, определяющим вязкость крови. Вязкость плазмы сильно зависит от гидратации и белков плазмы например, иммуноглобулина и фибриногена.

Вязкоэластичные свойства зависят от многих параметров: вязкость плазмы, деформация красных кровяных тел, образование скоплений и гематокрита. Трудно изучать вязкость крови обособленно, она зависит от многих факторов: температуры, наличия тромбоцитов и белых кровяных телец но только при патологических условиях. При низких скоростях сдвига малых нагрузках вязкость высокая: эритроциты упакованы стопками и мешают течению, при высоких скоростях сдвига красные тельца вытягиваются вдоль потока, и вязкость минимальна. Для описания течения жидкостей используют разные математические модели: кровь — это неньютоновская жидкость, то есть ее вязкость зависит от скорости сдвига.

Кривые напряжения сдвига описываются разными уравнениями.

Для разжижения крови также рекомендуется употреблять виноград. Благодаря особым соединениям в частности, биофлавоноидам этот продукт считают одним из лучших для кардио-сосудистой системы. А как насчет того, чтобы пить 10-12 стаканов воды в день как метод разжижения крови?

Это много воды, хотя она, безусловно, может снизить вязкость крови. Исследования показывают, что те, кто выпивает 5 или более стаканов воды в день, с меньшей вероятностью умрут от болезни по сравнению с теми, кто выпивает 2 или меньше стаканов воды в день. Ешьте и пейте продукты, разжижающие кровь , такие как чай с гранатом, имбирь, куркума, тмин, чеснок, лук, зеленый чай, холодноводную рыбу, такую как дикий лосось, тофу и грецкие орехи.

Опасность повышенной вязкости крови при беременности В настоящее время врачи все чаще говорят о связи тромбофилии с осложнениями, возникающими при беременности. Повышенная свертываемость крови при беременности может закончиться выкидышем. У беременных женщин склонность к образованию тромбов многократно возрастает. Причем у женщин, имеющих повышенную вязкость крови до зачатия, проблема усугубляется во время вынашивания ребенка.

Результатом могут быть различные осложнения: поздний токсикоз, невынашивание, отслоение плаценты, преждевременные роды и даже внутриутробная гибель плода. Каким образом возникают эти осложнения? Будущий ребенок получает все жизненно необходимые ему вещества из плаценты, в которой много кровеносных капилляров и сосудов. Если тромбы образуются в месте соединения плаценты с маткой или в ее кровеносных сосудах, то плод не может получать питательные вещества и перестает развиваться. С помощью современных методик выявляются женщины, страдающие повышенной вязкостью крови, склонные к образованию тромбов, перенесшие в прошлом осложнения при беременности. Чтобы предотвратить возможные проблемы, они получают лечение препаратами, разжижающими кровь. Лечение при повышенной свертываемости крови При лечении повышенной вязкости крови особое внимание следует уделить причинам ее возникновения и диагностике.

Классическим методом лечения тромбофилии является прием антикоагулянтов.

Почему у человека густая кровь, как разжижать?

Если вязкость крови повышается значительно, то врач назначит женщине терапию. Иногда чтобы привести в норму вязкость крови, достаточно просто откорректировать свое меню, неплохим эффектом обладают народные способы лечения, но перед их применением следует посоветоваться с доктором. Также для разжижения крови врач может назначить лекарственные препараты, схему подбирают в индивидуальном порядке. Игнорировать значительное повышение вязкости крови нельзя, так как во время беременности это может привести к тромбозам, тромбофилии, лейкозу или варикозу. Поражение сосудистого русла представляет опасность не только для самой женщины, но и для ребенка. Густая кровь у новорожденного ребенка У ребенка, который только что появился на свет, кровь имеет темный цвет и повышенную вязкость.

Показатели крови новорожденного в значительной степени отличаются от аналогичных данных у детей старшего возраста. Переживать по этому поводу не следует, пройдет несколько дней и эти цифры пойдут на убыль. Читайте также: Сердце человека: функции, анатомическое строение Густая кровь у новорожденного не является отклонением от нормы. Просто ребенок рос и развивался в кардинально иной среде, а сейчас он попал в новый мир. Его организму требуется время, чтобы приспособиться к изменившимся окружающим условиям, например, научиться дышать по-другому.

Кстати, именно это гемоглобин, который носит название фетального, становится причиной развития желтушки новорожденных.

Реологические свойства крови изучались в течение многих лет, и было четко продемонстрировано, что кровь на подчиняется законам Ньютона. Эта характеристика крови известна как «разжижение при сдвиге», которое является свойством некоторых сложных жидкостей уменьшать свою вязкость по мере увеличения скорости сдвига например, увеличения скорости потока , и этот эффект постоянно наблюдался в крови Merrill E. Реологические методы в настоящее время обладают хорошей чувствительностью и специфичностью при самых разнообразных заболеваниях. Клинически, реология крови важна, потому что сопротивление кровообращению имеет два основных компонента, сосудистый и реологический. В крупных сосудах реологию крови следует рассматривать с точки зрения объемного потока, здесь вязкость крови зависит в основном от концентрации эритроцитов и вязкости плазмы и, в меньшей степени, от деформируемости и агрегации эритроцитов. В микроциркуляции, где клетки должны деформироваться, чтобы проходить через узкие капилляры, клеточная реология то есть деформируемость отдельных клеток является основной детерминантой сопротивления потоку. Эта способность к деформации также является определяющим фактором времени выживания клетки в кровообращении. Вязкость крови является важной гемореологической переменной и определяется главным образом концентрацией в плазме нескольких макромолекул, таких как фибриноген, липопротеины и общие сывороточные белки, тогда как вязкость цельной крови в основном зависит от количества эритроцитов и гематокрита.

HCT является индикатором кровотока в сети мелких кровеносных сосудов, характеризующим микроциркуляцию: повышенная вязкость крови означает устойчивость к кровотоку в большинстве тканей организма и, следовательно, возможное повреждение органа-мишени. Вязкость крови сильно зависит от концентрации эритроцитов и их биомеханических свойств, таких как агрегация и эластичность мембран. Развитие микрофлюидики в последние десятилетия открыло альтернативные методы измерения реологических свойств жидкостей, включая кровь. Несколько экспериментальных исследований проанализировали поведение эритроцитов и их связь с вязкостью цельной крови с использованием микрофлюидики. Кроме того, были опубликованы работы о возможности сочетания микроскопии и микрофлюидики для диагностики. Традиционно реологические анализы крови использовались для диагностики и мониторинга инфекций, ревматических заболеваний и злокачественных новообразований. За последние 20 лет исследования показали, что гематологические детерминанты устойчивости кровотока гематокрит, фибриноген, количество лейкоцитов и изменение жесткости этих клеток и эритроцитов также связаны с нарушением питания, обмена веществ, эндокринными и сосудистыми заболеваниями. Стоит помнить, что в результате увеличения количества лейкоцитов, часть этих клеток прилипает к эндотелиальным клеткам кровеносных сосудов. Деформируемость эритроцитов по существу связана с их структурой то есть с клеточной геометрией, свойствами мембраны и вязкостью цитоплазмы , поэтому можно ожидать, что структурные нарушения, обнаруженные при некоторых гематологических расстройствах влияюют на кровоток в мелких сосудах и определяются продолжительностью жизни эритроцитов Снижение деформируемости эритроцитов может способствовать снижению выживаемости эритроцитов и анемии при ожогах, заболеваниях печени и почечной недостаточности.

При травмах и воспалительных заболеваниях явной гипервязкости обычно препятствуют вазодилатация и снижение гематокрита. Тем не менее, состояния низкого потока могут возникать системно из-за гемоконцентрации сокращенный объем плазмы, при тяжелых ожогах, неадекватном переливании эритроцитов или обезвоживании вследствие болезни; системно при нарушенном кровообращении; и локально при венозном тромбозе или заболевании артерий. В таких обстоятельствах внутреннее сопротивление кровотока может усилить нарушение кровотока, способствовать ишемии и тромбозу. И наоборот, оптимальные уровни гематокрита, фибриногена и количества лейкоцитов могут быть ниже нормы в состояниях с низким кровотоком. Гемодилюция с помощью коллоидной инфузии полезна при ожогах, шоке, крупных операциях, профилактике послеоперационных венозных тромбозов, хронической стабильной хромоте и, возможно, при остром инсульте и тромбозе вен сетчатки. Плазменный обмен может быть полезным при тяжелой болезни Рейно. Дефибринация с помощью анкрода эффективна при профилактике и лечении венозного тромбоза, но его роль в заболевании артерий не доказана. Преимущества терапии стрептокиназой при венозной тромбоэмболии и остром инфаркте миокарда могут быть частично реологическими из-за истощения фибриногена. Препараты с реологическими эффектами могут быть полезны при перемежающейся хромоте Lowe G.

Вязкость крови и гипертония Вязкость крови коррелирует с артериальным давлением, но патогенетическое значение повышенной вязкости крови при эссенциальной гипертонии неизвестно. Теоретически, здесь имеет место увеличение периферического сопротивления, что подтверждается более сильной корреляцией HCT с диастолическим, а не систолическим артериальным давлением, а также с гемодинамикой in vivo. Гипервязкость может быть связана с неблагоприятным прогнозом при гипертонии, поскольку она коррелирует с тяжестью и осложнениями доклинической гипертонической болезни, включая гипертрофию левого желудочка Вязкость крови увеличивается на всех сдвигах на ранних стадиях эссенциальной гипертензии из-за снижения деформируемости эритроцитов, нарушения динамической деформируемости и агрегации эритроцитов и увеличения вязкости плазмы. Повышенная вязкость плазмы может, в свою очередь, быть результатом и более высоких уровней фибриногена, которые могут возникнуть в результате реакции белка в хронической фазе, возможно, связанной с повышенным выделением катехоламинов при гипертонии. При гипертонии реологические нарушения эритроцитов могут быть связаны с клеточным дефектом транспорта натрия. При повреждении в результате турбулентности эти жесткие эритроциты могут выделять аденозиндифосфат, что может способствовать активации тромбоцитов и лейкоцитов. Данные о повышенных уровнях растворимого Р-селектина - индекса активации тромбоцитов, наряду с нарушением реологии лейкоцитов при эссенциальной гипертонии подтверждают гипотезу, согласно которой активация тромбоцитов и лейкоцитов может играть роль в повышении вязкости крови на ранних стадиях эссенциальной гипертонии. Влияние вязкости крови на венозный кровоток Повышенная вязкость цельной крови при низком сдвиге влияет на венозное сопротивление и, следовательно, на венозный кровоток. Высокая венозная резистентность связана с низким градиентом давления, нарушениями в микрососудистом кровотоке и снижением перфузии тканей при микроциркуляции.

Интересно, что вязкость крови при низком сдвиге наиболее тесно коррелирует с плотностью капилляров кожи. У гипертоников с более низкой плотностью капилляров в коже тканевая перфузия еще более нарушена из-за уменьшения локальной доступности кислорода и может привести к локальной гипоксии и ацидозу. Все эти изменения способствуют активации лейкоцитов. Жесткие агрегаты клеток крови могут привести к значительному увеличению локальной вязкости крови и увеличению критического радиуса капилляра для явления инверсии. За явлением инверсии следуют аномалии микрососудистого кровотока, которые увеличивают общее периферическое сопротивление. Роль аномальной вязкости крови в патогенезе окклюзии мелких вен, например, вен сетчатки долгое время подозревалась многими исследователями, включая повышенную вязкость крови и плазмы, повышенный уровень гематокрита и фибриногена и аномальную агрегацию эритроцитов. Следовательно, использование терапии, действующей на реологические параметры эритроцитоферез , может принести в данном случае пользу.

Вредные привычки курение и алкоголь.

При остром он развивается за несколько часов, при хроническом — от пары недель до нескольких лет. При этом острое течение может осложниться тромбозом сосудов головного мозга и ишемическим инсультом.

Нормальная вязкость крови обеспечивает постоянство движения крови по сосудам. Вязкость крови определяет степень внутреннего трения крови, возникающего из-за того, что разные слои крови движутся с различной скоростью, а также степень трения крови о стенки сосудов.

В норме, плазма более вязкая, чем вода в 1. Вязкость крови в норме у человека составляет 5. Чем опасна густая кровь для здоровья При патологическом повышении вязкости крови возникает «сопротивление» кровотоку. Из-за затрудненного и замедленного прохождения крови по сосудам увеличивается нагрузка на сердце, которое вынуждено работать в усиленном режиме, а также нарушается микроциркуляция и кровоснабжение органов и тканей.

За счет замедленного движения густой крови по сосудам создаются благоприятные условия для развития тромбов и усиленного свертывания крови. Вязкость крови может увеличиваться и при наличии гиперлипидемии и гиперхолистеринемии.

Густая кровь (синдром повышенной вязкости): предпосылки, проявления, связь с болезнями, чем лечить?

Это немедицинские термины. То, что простым языком принято называть «густой» кровью, врачам известно как гиперкоагуляция, или повышенная вязкость крови. Кровь состоит из следующих компонентов: клетки — эритроциты, лейкоциты, тромбоциты, плазма — жидкая составляющая, элементы, которые кровь переносит, — гормоны, ферменты и др. Важно, чтобы все элементы сохраняли баланс. Если он нарушается, и количество клеток увеличивается относительно жидкой части, кровь становится слишком «густой».

Как круговорот воды в природе. Вот это принципиальная схема работы сердечно-сосудистой системы. Сердце выталкивает кровь, и она идет дальше. Но если на пути крови встретится печень, забитая лямблиями и описторхами, то кровь не поднимется, а скопится внизу.

Как следствие: варикозное расширение, тромбофлебит, сосудистые звездочки, геморрой и т. Кровь должна циркулировать беспрепятственно. Так же сердцу необходимо питание. Представьте себе две половинки сердца. Половинка сократилась — кровь ушла. Причем сократилась одномоментно: сердце сжалось, вторая половина в этот момент расширилась — кровь зашла. Вторая половина сократилась — кровь ушла, первая разжалась — кровь зашла. Все, ничего больше не происходит.

Если в крови есть 28 аминокислот, 15 минералов, 12 витаминов, 3 жирные кислоты и 7 ферментов 28-15-12-3-7 , то так и будет. А если кровь идет сгустками, если эритроциты прилипли друг к другу из-за нарушенного кислотно-щелочного равновесия, появляются перебои в работе всей системы. Эритроцит самостоятельно ни к чему не примагничивается, у него своя аура. Как только в крови появляется кислота, аура эритроцита гасится, они начинают слипаться и появляются образования, похожие на монетные столбики. Кто смотрел свою кровь на темнопольном микроскопе, мог их видеть. Вот такая кровь не может переносить кислород. Вот в такой крови жир. Холестерин сворачивается, так же, как в шашлыке с уксусом, и налипает на эритроциты.

И это называется тромб. И от этих тромбов, собственно, умирает каждый четвертый человек на планете. Статистика везде одинаковая. Только у японцев другая статистика. У них люди в некоторых местах, включая наш любимый остров, не умирают от болезней, а перестают жить, потому что кончается энергетический запас. Оказывается, так тоже можно! Итак, сердце может быть идеальным, добрым, ласковым — все зависит от того, какая кровь к нему подойдет. Вы знаете, что сердце сохраняет автоматизм, даже когда отделено от организма.

Он взял сердце цыпленка, положил его в чашку, налил туда воду со всем необходимым 28, 3,12,15, 7 , водичку и каждый день ее менял. Сердце жило 35 лет. Без курицы. Оно не знало, что курицы нет. Питательные вещества подходят — все нормально, мама на месте. Значит, она съела что-то хорошее. Профессор получил Нобелевскую премию, потому что он доказал, что если клетку содержать в нормальных условиях, она может очень долго жить. В природе ни одна курица не дожила до своего 35-летнего юбилея.

Какая вязкость крови, какие питательны свойства крови, такая и жизнь. Это абсолютно две взаимосвязанные вещи. Если в крови нет чего-то из необходимого — страдают клетки сердца. Клетка сердца страдает, страдает, страдает, а потом умирает. И сердце начинает сокращаться неритмично, хаотично, слишком часто или более медленно. Мы это называем мерцательной аритмией. Оно не отдыхает. Оно должно полсекунды отдыхать -полсекунды сокращаться.

Если оно треть отдыхает, а три четверти сокращается, или две третьих, оно истощается. И мы говорим: «у вас изношенное сердце». И патологоанатом видит, что сердце как тряпочка и говорит: «Этот человек уже не мог жить». У него истощение сердечной мышцы. Истощение — это отсутствие питательных веществ и кислорода.

О том, что кровь при определенных условиях проявляет свойства неньютоновской жидкости известно достаточно давно и подтверждено многочисленными вискозиметрическими измерениями in vitro [ 64 ]. Однако реальное движение крови в микрососудистой сети, характеризующейся разветвленностью и изменяющейся геометрией, значительно отличается от существенно упрощенных условий оценки реологии крови in vitro. Свой вклад вносит и активность эндотелиальных клеток например, их лиганд-рецепторное взаимодействие с клетками крови и гликокаликс, покрывающий тонким слоем люминальную поверхность сосуда [ 89 ]. Реология крови известна как важная детерминанта тканевой перфузии и, в соответствии с уравнением Пуазейля, гемодинамическое сопротивление в сосудистой сети с постоянной геометрией длиной и радиусом сосуда прямо пропорционально вязкости крови [ 23 , 24 ]. Существует множество механизмов, напрямую контролирующих калибр кровеносных сосудов, которые регулируют так называемую анатомическую составляющую сопротивления кровотоку посредством нейрогенных и биохимических сигналов. Дополнением к ним служит вязкость крови, которая является относительно постоянной в условиях нормы и может претерпевать изменения при повреждениях, заболеваниях и адаптации к изменяющимся условиям [ 1 , 151 ]. Если исходить из формулы Пуазейля, рост вязкости крови должен способствовать увеличению гидродинамического сопротивления кровотоку и наоборот, при снижении вязкости сопротивление будет уменьшаться. Ток крови продуцирует напряжение сдвига, воздействующее на мембраны эндотелиальных клеток, что ведет к выработке ими оксида азота и простациклина, это феномен так называемой биохимической механотрансдукции, который лежит в основе ауторегуляторного феномена — потокзависмой вазодилатации и регуляции давления крови с изменением ее вязкости [ 81 ]. Экспериментальные измерения вязкости крови человека демонстрируют, что с изменением скорости сдвига кажущаяся вязкость крови заметно меняется. При скоростях сдвига выше 100 с—1 типичных для многих кровеносных сосудов in vivo отклонение поведения крови от ньютоновского становится незначительным, и кажущаяся вязкость крови приближается к некоторому постоянному значению. Однако при уменьшении скорости сдвига вязкость крови постепенно возрастает. Общей причиной зависимости кажущейся вязкости от скорости сдвига является изменение ее внутренней структуры, поэтому такая вязкость называется структурной. В зоне низких скоростей сдвига, характерных для кровотока в венулах и венах, формируются структуры из агрегатов эритроцитов. Зависимость вязкости крови от диаметра сосудов имеет сложный характер. В соответствии с эффектом Фареуса—Линдквиста, кажущаяся вязкость крови снижается при уменьшении диаметра сосуда менее 0. При этом, чем меньше калибр сосуда, тем значительнее снижение вязкости крови и, в конечном счете, она приближается к вязкости плазмы за счет образования пристеночного слоя плазмы, аксиального дрейфа эритроцитов и снижения гематокрита. Однако при значениях диаметра менее некоторого критического уровня наблюдается обратный эффект — вязкость крови и сопротивление кровотоку существенно возрастают. Величина критического диаметра в значительной степени определяется внутренней вязкостью эритроцитов и степенью их агрегации. Внезапный и кратковременный рост вязкости крови может быть обусловлен резким изменением агрегируемости эритроцитов или тромбоцитов, изменением уровня рН. Даже начальные стадии процесса свертывания крови способствуют повышению степени агрегации эритроцитов [ 64 ]. Небольшие изменения двух или более факторов, влияющих на реологию крови, способны вызвать усиленное синергичное повышение вязкости и увеличение критического диаметра, при котором проявится обратный эффект Фареуса—Линдквиста [ 124 ]. Такие многократно усиленные по механизму положительной обратной связи даже локальные нарушения могут спровоцировать остановку кровотока. Поскольку количественные измерения реологических свойств крови в системе микроциркуляции в условиях in vivo на сегодняшний день составляют определенную методическую проблему, основные представления о реологии крови базируются на измерениях вязкости in vitro с использованием ротационных либо капиллярных вискозиметров. Вязкость крови как свойство этой жидкой ткани кроме вышеназванных внешних факторов зависит от вязкости плазмы, показателя гематокрита объемной концентрации ее форменных элементов, преимущественно эритроцитов и от микрореологических свойств красных клеток крови — их деформируемости и агрегации [ 7 , 64 ]. Показатель гематокрита Очевидно, что концентрация взвешенных частиц во многом определяет вязкость суспензии. Для крови — это показатель объемной концентрации форменных элементов по большей части эритроцитов — гематокрит. В ряде случаев при чрезмерной агрегации тромбоцитов возможен и их вклад в текучие свойства крови; лейкоциты также могут значительно влиять на реологические свойства крови, если их объемная фракция намного выше нормы [ 64 ]. Однако в физиологических условиях основное влияние на текучесть крови и транспорт кислорода оказывает концентрация эритроцитов — самого многочисленного пула клеток крови. Соотношение вязкости крови и гематокрита важно в оценке кислородтранспортной функции крови и эффективности доставки кислорода в ткани [ 136 ]. На транспорт кислорода оказывают влияние как сосудистые, так и реологические факторы. Вязкость плазмы Характерной особенностью крови как ткани является отсутствие специальных межклеточных структур, объединяющих ее форменные элементы в единое целое, — они находятся во взвешенном состоянии в окружающей их жидкой среде — плазме. Плазма представляет собой достаточно сложную биологическую среду, в состав которой входят белки, различные соли электролиты , углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и другие биологически активные соединения, растворенные газы. Белки плазмы, выполняющие ряд важнейших функций, в гемореологическом отношении важны по следующим причинам: во-первых, из-за своей относительно высокой концентрации в плазме, крупных размеров и зачастую асимметричной формы молекул они вносят весомый вклад в вязкость плазмы, а, следовательно, и в вязкость цельной крови. Значение фракции фибриногена неоспоримо, тем более что концентрация этого протеина повышается в условиях патологии. С точки зрения физики цельная кровь — это вязкоупругая среда, в которой плазма реализует ее вязкий компонент. Внутри этой системы происходит передача напряжения сдвига на упругие элементы — эритроциты — через жидкую фазу — плазму. Следовательно, ее вязкость и плотность оказывают влияние на деформацию эритроцитов, обеспечивая им эффективный пассаж через микрососуды [ 7 ]. Деформируемость эритроцитов Известно, что эритроциты обладают уникальной способностью значительно изменять свою форму деформироваться при прохождении через микрососуды, диаметр которых сопоставим или даже меньше диаметра самих клеток [ 2 , 65 ]. Такая способность эритроцитов к деформации ведет к тому, что в потоке клетки вытягиваются, это их свойство вносит свой вклад в интегральную вязкость крови при высоких скоростях сдвига, и в этих условиях кровь может рассматриваться как ньютоновская жидкость, вязкость которой зависит от деформируемости эритроцитов наряду с показателем гематокрита и вязкостью плазмы. Классические представления о деформируемости эритроцитов базируются на визуализации микрокровотока с помощью биомикроскопии; на основании этих наблюдений был сделан вывод о том, что деформация эритроцитов происходит как непрерывная вязкая деформации, которую автор этой гипотезы H. Такой вид деформации определяется вязкостью цитоплазмы и отношением площади поверхности к объему эритроцита. В настоящее время используются методы микрофлюидики и искусственной ригидификации эритроцитов, которые позволяют по-иному взглянуть на феномен деформируемости эритроцитов, его сложность и недостаточную изученность. В ряде экспериментов по моделированию микрокровотока в разных условиях при переменных скоростях сдвига и разном соотношении объемных фракций крови продемонстрировано, что в ходе деформации эритроциты подвергаются разнообразным морфологическим модификациям [ 85 ]. Предложены возможные механизмы этого сложного перехода от одной формы клетки к другой при повышении напряжения сдвига [ 92 ]. В современных экспериментальных исследованиях по изучению деформируемости эритроцитов делается акцент на сложности и комплексном характере физиологических механизмов этого процесса. До настоящего времени наши знания о регуляции деформируемости эритроцитов базируются на измерениях их деформации при вхождении в узкий канал либо в условиях движения в потоке при заданных сдвиговых условиях течения скорости сдвига или напряжения сдвига. Эти два подхода, как представляется, отражают различные клеточные механизмы, обеспечивающие деформацию. Было замечено, что состояния со значительными нарушениями деформируемости эритроцитов практически совпадают с условиями проявления эриптоза — программируемой гибели эритроцитов, процесса аналогичного апоптозу, но имеющего специфические для безъядерных эритроцитов особенности. Это, например, гипоксия, железодефицитные состояния, злокачественные новообразования, дегидратация, метаболический синдром, гемолитическая анемия, сердечная недостаточность, сахарный диабет, хроническая болезнь почек, малярия, сепсис, серповидноклеточная анемия и т. Исходя из концепции эриптоза, изменения деформируемости в физиологических условиях например, при мышечной деятельности и при патологических состояниях например, при сахарном диабете, серповидноклеточной анемии предложено рассматривать как принципиально разные процессы [ 33 ]. Оптимальной деформируемость оказывается в физиологических пределах таких физико-химических показателей окружающей среды плазмы крови как осмолярность и рН, при отклонении в ту или иную сторону деформируемость снижается. Не менее важно для поддержания нормальной морфологии и деформируемости эритроцитов присутствие альбумина, который обладает способностью не только предотвращать, но и устранять уже имеющий место эхиноцитоз [ 115 ]. Деформация эритроцитов повышает гидродинамическое перемешивание цитоплазмы, что ведет к усилению внутриклеточной конвекции молекул кислорода, дезокси- и оксигемоглобина. Это благоприятствует внутриэритроцитраной диффузии кислорода и является одним из механизмов внутриклеточного транспорта кислорода, обусловливающим высокий коэффициент переноса кислорода при относительно низком коэффициенте диффузии. Ухудшением деформируемости эритроцитов обусловлено развитие застойных явлений капиллярного кровотока и, как следствие, возникновение тканевой гипоксии. За счет перемешивания содержимого эритроцитов в текущей крови деформируемость в большей степени способствует диффузии кислорода, чем облегченная диффузия [ 2 ]. Агрегация эритроцитов Эритроциты человека в физиологических условиях объединяются в линейные и разветвленные агрегаты при снижении скоростей сдвига до критического уровня. Обратимая умеренная агрегация красных клеток крови человека необходима для нормального кислородного питания тканей и удаления из них продуктов метаболизма. Образование агрегатов по типу монетных столбиков способствует обмену кислородом между эритроцитами. В монетных столбиках и происходит усреднение их степени оксигенации для более эффективного восприятия кислорода в легких [ 14 ]. Агрегация эритроцитов оказывает многофакторное комплексное влияние на сопротивление кровотоку in vivo, которое может реализовываться посредством следующих механизмов: 1 за счет уменьшения упорядоченности линейного течения при увеличении размера движущихся частиц [ 22 ]; 2 повышением затрат энергии на разобщение клеток в условиях микроциркуляции [ 152 ]; 3 агрегация способствует аксиальному дрейфу эритроцитов и образованию краевого плазменного слоя [ 41 ]. Повышенное аксиальное скопление эритроцитов ведет к снижению локальной вязкости в пристеночной зоне сосуда [ 137 ], тем самым модулируя активность сосудистых регуляторных механизмов, активируемых механическим стрессом. Это выражается в ингибировании генерации NO эндотелием [ 25 ], затруднении процесса деоксигенации и снижении отдачи кислорода тканям при существенном увеличения пристеночного слоя плазмы, выступающего в качестве барьера для диффузии кислорода [ 139 ]. Агрегация эритроцитов — достаточно сложный феномен, гемодинамические эффекты которого многосторонни и неоднозначны. Такие эффекты как проскальзывание skimming плазмы, эффект Фареуса, микрососудистый гематокрит скорее улучшают микрокровоток, однако исходя из влияния агрегации эритроцитов на внутрисосудистый профиль их скоростей, можно заключить, что рост агрегации способствует снижению поток-зависимой вазодилатации, тем самым ухудшая микрокровоток [ 158 ]. Значение агрегации эритроцитов особенно возрастает в условиях патологии, поскольку при этом изменяются степень агрегации, скорость агрегатообразования, устойчивость образующихся агрегатов, их размеры и морфология [ 1 , 11 ]. Повышенная степень агрегации ведет к ухудшению оксигенации тканей, способствует развитию ишемии и тромбоза, приводит к нарушению микроциркуляции органов и тканей [ 97 ]. В экспериментах in vivo показано, что при супранормальных показателях процесса агрегатообразования эритроцитов имеет место существенное уменьшение плотности функционирующих капилляров, в то время как при физиологических уровнях агрегации такое явление возможно только при снижении артериального давления [ 78 ]. Ангиогенез на уровне микроциркуляции отличается стохастическим характером, при этом формируется микрососудистая сеть с мельчайшими сосудами — капиллярами, диаметр которых сопоставим с размерами клеток крови порядка 5 мкм [ 122 ]. Если системное кровообращение имеет определенную структуру и строение, то на уровне микрокровотока рост и изменения сосудистой сети происходят под управлением локальных тканевых факторов [ 101 , 154 ]. Сократительная активность гладких миоцитов сосудистой стенки обеспечивает поддержание оптимального диаметра сосудов в системе микроциркуляции и сопряжена с их способностью поддерживать сосудистый тонус в течении длительного времени. На мышечный компонент сосудистой стенки непосредственно воздействуют основные тонусформирующие факторы в системе микроциркуляции — нейрогенный, миогенный и эндотелиальный механизмы регуляции просвета сосудов. В физиологических условиях собственно миогенный компонент регуляции в чистом виде локализован на прекапиллярах и сфинктерах, нейрогенная регуляция затрагивает артериолы и артериоло-венулярные анастомозы, мишенью эндотелиальной регуляции диаметра сосудов являются по большей части более проксимальные сосуды мелкие артерии, крупные артериолы [ 5 ]. Особое место в регуляции тонуса микрососудов наряду с нейрогенной и гормональной регуляцией принадлежит локальной местной регуляции, поскольку именно она способна оперативно управлять кровотоком в соответствии с постоянно изменяющимися потребностями тканей. И это служит дополнительным аргументом в пользу представлений о микроциркуляторно-тканевой системе, где все подчинено решению основной задачи — обеспечению оптимального уровня жизнедеятельности тканевого региона. На уровне обменных сосудов капилляров , не имеющих сократительных элементов, объектами регуляции выступают число функционирующих перфузируемых капилляров, отражающих площадь обменной поверхности, и те процессы обмена, которые реализуются через сосудистую стенку массоперенос растворенных веществ [ 5 ]. Сосуды микроциркуляторного русла почти полностью выстланы эндотелиальными клетками, которые фенестрированы и содержат поры, связь между ними осуществляют различные молекулы, включая кадгерины, а также токопроводящие щелевые контакты, которые обеспечивают восходящую электрическую связь между эндотелиоцитами. Эти эндотелиальные структуры различаются по плотности и морфологии в сосудах различных органов. Эндотелиоциты в симбиозе с гладкомышечными клетками сосудистой стенки влияют на микрососудистый кровоток преимущественно за счет регуляции сосудистого тонуса артериол и прекапиллярных сфинктеров. Одной из важнейших субклеточных структур эндотелия, опосредующей его функцию, является гликокаликс, присутствующий на люминальной поверхности эндотелия [ 71 , 146 ]. Гликокаликс представляет собой гелеобразный слой толщиной 0. Гликокаликс играет ключевую роль в поддержании гомеостаза сосудов, контролирует проницаемость сосудов и тонус микроциркуляторного русла, предотвращает микрососудистый тромбоз и регулирует адгезию лейкоцитов. Принято считать, что целостность гликокаликса является основной детерминантой сосудистого барьера, однако в исследованиях Guerci P.

Поэтому кроме видимых overtly реологических нарушений как например, при серповидноклеточной анемии, когда эритроциты необратимо ригидифицированы , можно говорить и о скрытых covertly нарушениях реологии крови, которые не приводят к окклюзии сосудов, но ухудшают перфузию тканей [ 19 ]. Деформируемость эритроцитов может изменяться обратимо, либо необратимо, последнее ведет к эриптозу [ 34 ]. Высказывается мнение, что некоторые воздействия приводят к обратимым изменениям деформируемости эритроцитов, и таким образом включены в физиологическую регуляцию, в то время как другие влияния вызывают необратимые изменения деформируемости красных клеток крови, что выступает в качестве начального этапа эриптоза, то есть программируемой гибели эритроцитов. Например, процесс ригидификации эритроцитов при физических нагрузках — это скорее всего обратимый физиологический механизм, а изменения красных клеток крови в условиях патологии в условиях воспаления, при диабете 2 типа, серповидноклеточной анемии и т. Важную роль в обеспечении деформируемости эритроцитов играют и физико-химические свойства среды, окружающей клетку термические воздействия, рН, осмолярность, белки плазмы крови и оксидативный стресс. Однако на деформируемость эритроцитов и эриптоз способны оказать влияние еще и многие другие факторы. Это позволяет предположить, что определенные гомеостатические регуляторные циклы адаптируют жесткость эритроцитов к физиологическим условиям с целью оптимизации доставки кислорода в ткани в соответствии с их потребностью. Эритроциты отличаются высокой устойчивостью и обладают способностью к восстановлению, если изменяются условия окружения или прекращается действие стрессорных факторов, однако как в любых физиологических или молекулярных сигнальных путях, наступает точка невозврата, после которой восстановление становится невозможным. Результатом воздействий, которые необратимо повреждают красные клетки крови, становится полная их деструкция и удаление из кровотока. Клиренс ригидных эритроцитов в селезенке — это основной регулятор деформационных свойств эритроцитов [ 34 ]. В основе процесса транспорта кислорода эритроцитами, движущимися в системе микроциркуляции, лежат два базовых механизма — конвекция транспортирующих кислород эритроцитов и диффузия кислорода из красных клеток крови к митохондриям клеток тканей [ 61 ]. Первый компонент кислородного транспорта в ткани определяется потоковыми свойствами эритроцитов в крови флакс , а диффузионная составляющая может быть охарактеризована плотностью функционирующих капилляров [ 27 ]. Уровень активности метаболизма ткани и, соответственно, потребления ею кислорода является основным фактором, определяющим диффузию кислорода из крови в ткань. Действие кислорода как регуляторного фактора может быть как прямым, так и непрямым. Прямое воздействие осуществляется на сосудистую стенку, которая содержит сенсор кислорода, реагирующий на парциальное напряжение кислорода в периартериолярном пространстве. Непрямое действие реализуется через вторичные метаболиты и пусковым сигналом служит тканевой или конечный капиллярный уровень напряжения кислорода. Сенсоры локализуются в тканевых митохондриях, эндотелии капилляров или стенке венул. В качестве уникального мобильного сенсора кислорода, как показано исследованиями последних лет, способны выступать и эритроциты [ 48 , 74 ]. Поскольку в системе микроциркуляции прямой механизм требует значительного падения периартериолярного напряжения кислорода, в физиологических условиях, по всей видимости, преобладает непрямой механизм регуляции. Кроме основной функции эритрона транспорта кислорода от легких к тканям , в настоящее время доказано его активное участие в регуляции сосудистого тонуса вазорегуляция , что лежит в основе оптимизации регионарного кровотока с целью обеспечения доступности кислорода в легких и его потребления на периферии. В случае недостаточного поступления кислорода регуляция его доставки обеспечивается варьированием кровотока, а не содержанием кислорода, поскольку содержание кислорода относительно фиксированная величина, в то время как показатели кровотока могут изменяться в диапазоне нескольких порядков. Таким образом, объемный кровоток и его распределение — это физиологические параметры, которые наиболее активно регулируются для поддержания соответствия между доставкой кислорода и потребности в нем. Система обратной связи, ответственная за регуляцию доставки кислорода в тканевые регионы, должна быть способна контролировать и при необходимости регулировать поступление кислорода в ткани на уровне микроциркуляции. Еще три десятилетия назад впервые было продемонстрировано, что в условиях гипоксии и гиперкапнии эритроциты высвобождают АТФ, которая потенциально может выполнять функцию вазодилататора [ 30 ]. Было высказано предположение, что эритроциты, проходя через регионы с низким напряжением кислорода, стимулируют локальную вазодилатацию, увеличивая приток крови к этому региону. АТФ, связываясь с P2y1 и P2y2 пуринорецепторами эндотелия, вызывает расширение сосудов за счет релаксации гладких миоцитов сосудистой стенки вследствие выработки эндотелиоцитами оксида азота, простациклина или эндотелиального гиперполяризующего фактора [ 156 ]. Роль эритроцитов в этом процессе подтверждена экспериментами Dietrich и соавт. Количественная оценка высвобождения АТФ эритроцитами подтвердила, что этот процесс осуществляется достаточно быстро, чтобы быть физиологически значимым [ 57 ]. Впоследствии было доказано, что эритроцит выступает не только в качестве регулятора локального кровотока в соответствии с метаболическими потребностями тканей, но и выполняет роль сенсора гипоксии, поскольку количество высвобождаемого АТФ прямо пропорционально степени деоксигенации гемоглобина и регуляция гликолиза дезоксигемоглобином в эритроцитах выступает в качестве начального этапа сигнального пути высвобождения АТФ [ 72 , 58 , 48 ]. Эритроциты выполняют функцию сенсора кислорода в тканях, контролируя сосудистое сопротивление благодаря кислород-зависимому высвобождению АТФ [ 48 , 73 ]. Еще один из механизмов локальной регуляции регионарного кровотока основан на способности эритроцитов захватывать, депонировать и высвобождать оксид азота в том числе и синтезированный самими эритроцитами в зависимости от степени оксигенации гемоглобина, которая напрямую взаимосвязана с метаболической активностью ткани и потреблением ею кислорода [ 129 ]. Jia L. Кроме того, дезоксигемоглобин может восстанавливать нитриты с образованием NO [ 74 ]. Эритроциты человека сами синтезируют NO ферментативным путем, показано наличие у них активной NO-синтазы эндотелиального типа NOS , которая активируется под действием напряжения сдвига [ 148 ], синтезированный эритроцитами NO высвобождается в интравазальное пространство и оказывает влияние на сосудистый тонус [ 43 ]. Экспериментально продемонстрировано, что высвобождение оксида азота эритроцитами под действием напряжения сдвига, по величине соответствующего реальным условиям кровотока в системе микроциркуляции, способно вызвать дилатацию изолированных мелких брыжеечных артерий крысы [ 21 , 149 ]. Известно, что Hb эритроцитов способен депонировать NO [ 17 ], это было основанием для контраргументов в дискуссии о возможности высвобождения оксида азота эритроцитами. Сродство гемоглобина к NO уменьшается в деоксигенированном состоянии, поэтому высвобождение NO из эритроцитов облегчается при деоксигенации, способствуя регуляции вазомоторной функции сосудов [ 135 ]. Кроме того, было продемонстрировано, что анионный обменник белок полосы III на мембране эритроцитов может способствовать экспорту NO синтезированного эритроцитами или высвобождаемого из S-нитрозогемоглобина [ 107 ]. Стоит отметить, что от степени оксигенации гемоглобина в эритроцитах зависит внутриклеточная передача сигналов [ 20 ], действие гормонов и вазоактивных агентов [ 145 ], ионный транспорт [ 31 ] и деформируемость [ 150 ] эритроцитов. Однако бывают ситуации, когда умеренное повышение этих показателей способствует перфузии тканей и снижению сосудистого периферического сопротивления за счет механостимуляции синтеза NO эндотелием, то есть реологические свойства плазмы и крови влияют на величину просвета сосуда, обеспечивая эффективную микроциркуляцию в тканях [ 91 ]. В работе Salazar Vazquez и соавт. Следует заметить, что таким свойством обладает прирост вязкости, который не выходит за пределы физиологической нормы этого показателя. Это позволило S. Forconi предложить новую гемореологическую парадигму, согласно которой небольшое повышение вязкости крови обладает вазодилататорным эффектом и потенциально улучшает перфузию тканей, вопреки традиционной точке зрения о том, что любое увеличение вязкости крови негативно сказывается на перфузии тканей и может рассматриваться как фактор риска хотя и не самостоятельная патология [ 52 ]. Также большое значение имеет тот факт, что артериолы, резистивные микрососуды, регулирующие кровоток, снабжены сенсорными механизмами, которые контролируют напряжение сдвига на границе сосудистой стенки и регулируют его колебания через изменение активности сократительных элементов стенки сосуда, поддерживая его на постоянном уровне. Хронические нарушения такой регуляции например, в случае патологии приводят к адаптивным изменениям сосудистой стенки и микроангиоархитектоники ангиогенез и ремоделирование сосудов [ 101 , 122 ]. Поскольку воздействие напряжения сдвига на сосудистую стенку передается движущейся по этому сосуду кровью, очевидно, что механика этого взаимодействия будет в значительной степени определяться реологическими свойствами крови. Микрореологические свойства эритроцитов Наряду с вязкостью цельной крови микрореологические свойства эритроцитов вносят определенный вклад в реализацию эффективного микрокровотока [ 33 ]. Эритроциты обладают уникальными механическими свойствами, которые определяют их функционирование в условиях потока. Деформируемость отражает способность к изменению формы под действием внешних сил [ 40 ], это изменение полностью обратимо и при снятии деформирующего воздействия восстановление формы клетки происходит за достаточно короткое время порядка 0. Деформируемость эритроцитов обеспечивает снижение вязкости крови при высоких скоростях сдвига и играет важную роль при пассаже эритроцитов через терминальные сосуды микроциркуляторного русла, диаметр которых сопоставим с размерами клеток крови [ 128 ]. Уникальная форма эритроцитов двояковогнутый диск , отсутствие ядра и органоидов делает возможным вытягивание клетки с более, чем двукратным увеличением линейных размеров без существенного увеличения площади поверхности мембраны [ 99 ]. Считается, что деформируемость определяется вязкостью внутреннего содержимого клетки и вязкоэластическими свойствами мембраны, которые зависят от свойств сети протеинов на внутренней цитоплазматической стороне мембраны [ 100 ]. Модификация функциональных свойств эритроцитов возможна и под воздействием вазоактивных соединений, поскольку на мембране эритроцита имеются рецепторы к целому ряду таких соединений [ 131 , 34 ] и комплекс внутриклеточных сигнальных путей [ 21 , 108 ]. Кроме влияния вазоактивных агентов, участие эритроцитов в модуляции микрокровотока и сосудистого тонуса реализуется посредством жидкостно-механического взаимодействия с сосудистой стенкой [ 25 , 26 , 159 ] и высвобождением ими вазоактивных агентов АТФ [ 48 ] и оксида азота NO [ 73 , 148 ]. Было замечено, что деформируемость эритроцитов оказывает влияние на индуцированное гипоксией высвобождение АТФ: снижение деформируемости способствует уменьшению высвобождения АТФ, а рост деформируемости синхронизирован со стимуляцией этого процесса [ 111 ]. Посредством продукции оксида азота самими эритроцитами или клетками эндотелия под влиянием пристеночного напряжения сдвига, деформация эритроцитов может оказывать влияние на такие жизненно важные функции, как распределение крови, ангиогенез, митохондриальное дыхание и биогенез, потребление глюкозы, кальциевый гомеостаз и контрактильные свойства мышц. Таким образом, все эти функции находятся под регуляторным влиянием реологии крови [ 33 ]. Все попадающие в кровь биологически активные соединения контактируют с эритроцитами и могут оказывать влияние на их функциональные свойства. На сегодняшний день описано влияние более 30-ти различных факторов на микрореологические свойства и функции эритроцитов, есть все основания полагать, что в реальности это количество значительно больше [ 34 ]. В последнее время получены сведения о влиянии на реологические свойства эритроцитов таких соединений, влияние которых ранее не рассматривалось, но регуляторная роль которых в системе кровообращения становится все более очевидной, например, молекул газомедиаторов и циркулирующих в крови липидов. Известно, что циркулирующие в крови липиды связаны с неблагоприятными изменениями реологических свойств эритроцитов. Повышенный уровень липопротеинов низкой плотности или триглицеридов ассоциирован с ухудшением деформируемости эритроцитов, а липопротеины высокой плотности находятся в прямой взаимосвязи с деформируемостью [ 113 ]. Важнейший регулятор энергетического обмена гормон лептин, синтезируемый адипоцитами жировой ткани, улучшает деформируемость эритроцитов через NO-цГМФ-зависимый механизм [ 143 ], но в то же время повышает агрегацию эритроцитов [ 62 ]. Представлены данные о том, что лептин способен вызывать дилатацию сосудов как посредством NO-зависимых, так и NO-независимых механизмов [ 87 ]. В физиологических условиях лептин вызывает эндотелий-зависимую вазорелакцсацию стимулируя NO и эндотелиальный гиперполяризующий фактор. В то время как у практически здоровых лиц эффект лептина ведет преимущественно к вазодилатации, у пациентов с метаболическим синдромом гиперлептинемия постепенно дисрегулирует контроль кровяного давления посредством ухудшения эндотелиальной функции. По мере развития метаболического синдрома вклад эндотелиального гиперполяризующего фактора в гемодинамический эффект лептина становится неэффективным. Резистентность к вазодилатационному влиянию лептина может вносить вклад в развитие артериальной гипертонии [ 29 ]. Изучение влияния газомедиаторов на микрореологические свойства эритроцитов предпринято относительно недавно. Газомедиаторы — малые липидорастворимые молекулы газов NO, CO, H2S , которые не требуют сложного каскада передачи сигнала для реализации своего регуляторного влияния, они способны легко проникать через клеточную мембрану и непосредственно реализовывать свою биологическую функцию, взаимодействуя с клеточными компонентами [ 102 ]. Благоприятное влияние NO на микрореологические свойства эритроцитов показано Baskurt O. Муравьев А. Эффект оксида азота и сероводорода на деформируемость и агрегатные свойства эритроцитов зависит от уровня обеспеченности кислородом и более выражен у лиц с высокими показателями максимального потребления кислорода [ 3 , 8 ]. Продемонстрировано положительное влияние оксида азота на микрореологические свойства эритроцитов и показатели свертывания крови [ 141 ]. Классическая триада Рудольфа Вирхова, обозначившая ключевые факторы тромбообразования, включает в себя нарушение целостности сосудистой стенки в первую очередь ее эндотелиального слоя , изменения состава и свойств самой крови и скорости кровотока. Если первые два фактора интенсивно изучались и здесь достигнуты определенные успехи, то исследованию влияния условий течения крови на процесс тромбообразования уделялось недостаточно внимания. Первые исследования в этой области были предприняты в 70-гг. Начальным этапом свертывания крови является первичный тромбоцитарно-сосудистый гемостаз, который играет важную роль как в физиологических условиях, так и при патологии. Нестимулированные тромбоциты циркулируют в виде гладких дискоидных клеток с незначительной метаболической активностью. Такие тромбоциты не вступают в физиологически значимое взаимодействие с другими форменными элементами периферической крови или монослоем эндотелиальных клеток, выстилающим эндоваскулярное пространство. Физиологическая активация тромбоцитов начинается тогда, когда поврежден сосудистый эндотелий и обнажен субэндотелиальный внеклеточный матрикс. При этом происходит быстрая адгезия тромбоцитов к обнаженному субэндотелиальному экстрацеллюлярному матриксу в целях остановки кровотечения и репарации поврежденных тканей.

Чем опасна густая кровь, причины и лечение мужчин, женщин и детей

Синдром повышенной вязкости крови не является заболеванием, но при наличии серьезных патологий может вызывать тяжелые и грозные осложнения. Терапия зависит от того, какая именно проблема привела к повышению вязкости крови. Густота, или вязкость, крови зависит от концентрации двух компонентов: фибриногена и протромбина. Между 2 цилиндрами размещается кровь, которая перемещается по прибору за счет своего свойства вязкости. В результате повышенная вязкость крови может быть причиной ряда заболеваний — ишемического инсульта, инфаркта миокарда, тромбоэмболии легочной артерии, тромбоза вен и артерий нижних конечностей, ряда внутренних органов. Какая вязкость крови, какие питательны свойства крови, такая и жизнь.

Почему изменяется вязкость крови

  • Какая кровь, такая и жизнь: вот как от вязкости крови зависит состояние всего организма
  • Плотность и вязкость крови
  • Вязкость крови: причины, последствия
  • Густая кровь (синдром повышенной вязкости): предпосылки, проявления, связь с болезнями, чем лечить?

Факторы, влияющие на вязкость крови в организме.

Деформируемость эритроцитов Известно, что эритроциты обладают уникальной способностью значительно изменять свою форму деформироваться при прохождении через микрососуды, диаметр которых сопоставим или даже меньше диаметра самих клеток [ 2 , 65 ]. Такая способность эритроцитов к деформации ведет к тому, что в потоке клетки вытягиваются, это их свойство вносит свой вклад в интегральную вязкость крови при высоких скоростях сдвига, и в этих условиях кровь может рассматриваться как ньютоновская жидкость, вязкость которой зависит от деформируемости эритроцитов наряду с показателем гематокрита и вязкостью плазмы. Классические представления о деформируемости эритроцитов базируются на визуализации микрокровотока с помощью биомикроскопии; на основании этих наблюдений был сделан вывод о том, что деформация эритроцитов происходит как непрерывная вязкая деформации, которую автор этой гипотезы H. Такой вид деформации определяется вязкостью цитоплазмы и отношением площади поверхности к объему эритроцита. В настоящее время используются методы микрофлюидики и искусственной ригидификации эритроцитов, которые позволяют по-иному взглянуть на феномен деформируемости эритроцитов, его сложность и недостаточную изученность. В ряде экспериментов по моделированию микрокровотока в разных условиях при переменных скоростях сдвига и разном соотношении объемных фракций крови продемонстрировано, что в ходе деформации эритроциты подвергаются разнообразным морфологическим модификациям [ 85 ]. Предложены возможные механизмы этого сложного перехода от одной формы клетки к другой при повышении напряжения сдвига [ 92 ].

В современных экспериментальных исследованиях по изучению деформируемости эритроцитов делается акцент на сложности и комплексном характере физиологических механизмов этого процесса. До настоящего времени наши знания о регуляции деформируемости эритроцитов базируются на измерениях их деформации при вхождении в узкий канал либо в условиях движения в потоке при заданных сдвиговых условиях течения скорости сдвига или напряжения сдвига. Эти два подхода, как представляется, отражают различные клеточные механизмы, обеспечивающие деформацию. Было замечено, что состояния со значительными нарушениями деформируемости эритроцитов практически совпадают с условиями проявления эриптоза — программируемой гибели эритроцитов, процесса аналогичного апоптозу, но имеющего специфические для безъядерных эритроцитов особенности. Это, например, гипоксия, железодефицитные состояния, злокачественные новообразования, дегидратация, метаболический синдром, гемолитическая анемия, сердечная недостаточность, сахарный диабет, хроническая болезнь почек, малярия, сепсис, серповидноклеточная анемия и т. Исходя из концепции эриптоза, изменения деформируемости в физиологических условиях например, при мышечной деятельности и при патологических состояниях например, при сахарном диабете, серповидноклеточной анемии предложено рассматривать как принципиально разные процессы [ 33 ].

Оптимальной деформируемость оказывается в физиологических пределах таких физико-химических показателей окружающей среды плазмы крови как осмолярность и рН, при отклонении в ту или иную сторону деформируемость снижается. Не менее важно для поддержания нормальной морфологии и деформируемости эритроцитов присутствие альбумина, который обладает способностью не только предотвращать, но и устранять уже имеющий место эхиноцитоз [ 115 ]. Деформация эритроцитов повышает гидродинамическое перемешивание цитоплазмы, что ведет к усилению внутриклеточной конвекции молекул кислорода, дезокси- и оксигемоглобина. Это благоприятствует внутриэритроцитраной диффузии кислорода и является одним из механизмов внутриклеточного транспорта кислорода, обусловливающим высокий коэффициент переноса кислорода при относительно низком коэффициенте диффузии. Ухудшением деформируемости эритроцитов обусловлено развитие застойных явлений капиллярного кровотока и, как следствие, возникновение тканевой гипоксии. За счет перемешивания содержимого эритроцитов в текущей крови деформируемость в большей степени способствует диффузии кислорода, чем облегченная диффузия [ 2 ].

Агрегация эритроцитов Эритроциты человека в физиологических условиях объединяются в линейные и разветвленные агрегаты при снижении скоростей сдвига до критического уровня. Обратимая умеренная агрегация красных клеток крови человека необходима для нормального кислородного питания тканей и удаления из них продуктов метаболизма. Образование агрегатов по типу монетных столбиков способствует обмену кислородом между эритроцитами. В монетных столбиках и происходит усреднение их степени оксигенации для более эффективного восприятия кислорода в легких [ 14 ]. Агрегация эритроцитов оказывает многофакторное комплексное влияние на сопротивление кровотоку in vivo, которое может реализовываться посредством следующих механизмов: 1 за счет уменьшения упорядоченности линейного течения при увеличении размера движущихся частиц [ 22 ]; 2 повышением затрат энергии на разобщение клеток в условиях микроциркуляции [ 152 ]; 3 агрегация способствует аксиальному дрейфу эритроцитов и образованию краевого плазменного слоя [ 41 ]. Повышенное аксиальное скопление эритроцитов ведет к снижению локальной вязкости в пристеночной зоне сосуда [ 137 ], тем самым модулируя активность сосудистых регуляторных механизмов, активируемых механическим стрессом.

Это выражается в ингибировании генерации NO эндотелием [ 25 ], затруднении процесса деоксигенации и снижении отдачи кислорода тканям при существенном увеличения пристеночного слоя плазмы, выступающего в качестве барьера для диффузии кислорода [ 139 ]. Агрегация эритроцитов — достаточно сложный феномен, гемодинамические эффекты которого многосторонни и неоднозначны. Такие эффекты как проскальзывание skimming плазмы, эффект Фареуса, микрососудистый гематокрит скорее улучшают микрокровоток, однако исходя из влияния агрегации эритроцитов на внутрисосудистый профиль их скоростей, можно заключить, что рост агрегации способствует снижению поток-зависимой вазодилатации, тем самым ухудшая микрокровоток [ 158 ]. Значение агрегации эритроцитов особенно возрастает в условиях патологии, поскольку при этом изменяются степень агрегации, скорость агрегатообразования, устойчивость образующихся агрегатов, их размеры и морфология [ 1 , 11 ]. Повышенная степень агрегации ведет к ухудшению оксигенации тканей, способствует развитию ишемии и тромбоза, приводит к нарушению микроциркуляции органов и тканей [ 97 ]. В экспериментах in vivo показано, что при супранормальных показателях процесса агрегатообразования эритроцитов имеет место существенное уменьшение плотности функционирующих капилляров, в то время как при физиологических уровнях агрегации такое явление возможно только при снижении артериального давления [ 78 ].

Ангиогенез на уровне микроциркуляции отличается стохастическим характером, при этом формируется микрососудистая сеть с мельчайшими сосудами — капиллярами, диаметр которых сопоставим с размерами клеток крови порядка 5 мкм [ 122 ]. Если системное кровообращение имеет определенную структуру и строение, то на уровне микрокровотока рост и изменения сосудистой сети происходят под управлением локальных тканевых факторов [ 101 , 154 ]. Сократительная активность гладких миоцитов сосудистой стенки обеспечивает поддержание оптимального диаметра сосудов в системе микроциркуляции и сопряжена с их способностью поддерживать сосудистый тонус в течении длительного времени. На мышечный компонент сосудистой стенки непосредственно воздействуют основные тонусформирующие факторы в системе микроциркуляции — нейрогенный, миогенный и эндотелиальный механизмы регуляции просвета сосудов. В физиологических условиях собственно миогенный компонент регуляции в чистом виде локализован на прекапиллярах и сфинктерах, нейрогенная регуляция затрагивает артериолы и артериоло-венулярные анастомозы, мишенью эндотелиальной регуляции диаметра сосудов являются по большей части более проксимальные сосуды мелкие артерии, крупные артериолы [ 5 ]. Особое место в регуляции тонуса микрососудов наряду с нейрогенной и гормональной регуляцией принадлежит локальной местной регуляции, поскольку именно она способна оперативно управлять кровотоком в соответствии с постоянно изменяющимися потребностями тканей.

И это служит дополнительным аргументом в пользу представлений о микроциркуляторно-тканевой системе, где все подчинено решению основной задачи — обеспечению оптимального уровня жизнедеятельности тканевого региона. На уровне обменных сосудов капилляров , не имеющих сократительных элементов, объектами регуляции выступают число функционирующих перфузируемых капилляров, отражающих площадь обменной поверхности, и те процессы обмена, которые реализуются через сосудистую стенку массоперенос растворенных веществ [ 5 ]. Сосуды микроциркуляторного русла почти полностью выстланы эндотелиальными клетками, которые фенестрированы и содержат поры, связь между ними осуществляют различные молекулы, включая кадгерины, а также токопроводящие щелевые контакты, которые обеспечивают восходящую электрическую связь между эндотелиоцитами. Эти эндотелиальные структуры различаются по плотности и морфологии в сосудах различных органов. Эндотелиоциты в симбиозе с гладкомышечными клетками сосудистой стенки влияют на микрососудистый кровоток преимущественно за счет регуляции сосудистого тонуса артериол и прекапиллярных сфинктеров. Одной из важнейших субклеточных структур эндотелия, опосредующей его функцию, является гликокаликс, присутствующий на люминальной поверхности эндотелия [ 71 , 146 ].

Гликокаликс представляет собой гелеобразный слой толщиной 0. Гликокаликс играет ключевую роль в поддержании гомеостаза сосудов, контролирует проницаемость сосудов и тонус микроциркуляторного русла, предотвращает микрососудистый тромбоз и регулирует адгезию лейкоцитов. Принято считать, что целостность гликокаликса является основной детерминантой сосудистого барьера, однако в исследованиях Guerci P. Гликокаликс отталкивает эритроциты от люминальной поверхности эндотелия, способствуя их дальнейшему продвижению по сосудистому руслу, препятствует адгезии тромбоцитов к сосудистой стенке и ослабляет взаимодействие между тромбоцитами и лейкоцитами [ 4 ]. Число Рейнольдса, отражающее гидродинамический режим движения и степень его турбулентности, в таких сосудах невелико, поэтому течение крови принято считать ламинарным и подчиняющимся закону Стокса, на основании чего в таких условиях можно говорить о параболическом распределении скоростей профиле скоростей в сечении трубки сосуда. Если геометрия сосуда неизменна, движение крови определяется ее суспензионными свойствами.

В сосудах с диаметром, значительно превышающем размеры клеточных элементов, кровь рассматривают как континуум с нелинейными реологическими свойствами. При изучении движения крови в стеклянных трубках было продемонстрировано, что кажущаяся вязкость крови значительно снижается при уменьшении диаметра сосуда менее 300 мкм уровень микроциркуляции эффект Фареуса—Линдквиста , а при уменьшении диаметра сосуда до критических для пассажа клеток размеров порядка 3—5 мкм , наблюдается обратный эффект Фареуса—Линдквиста — рост кажущейся вязкости крови, поскольку на этом уровне определяющим фактором становятся клеточные свойства [ 24 , 128 ]. Значения сопротивления кровотоку на уровне микроциркуляции оказались существенно выше в условиях кровотока по сосудистой сети in vivo в сравнении с оценками, полученными в экспериментах in vitro при течении в стеклянных трубках. Логично предположить, что сосудистая стенка, являясь активным участником циркуляции крови, вносит свой вклад в это несоответствие. В качестве одной из возможных причин несоответствия было названо наличие гликокаликса на поверхности эндотелиальных клеток. Эндотелий, длительное время считавшийся пассивной сосудистой оболочкой, в настоящее время рассматривается в качестве независимой системы, играющей важную роль в процессах тромбоза и тромболизиса, взаимодействия тромбоцитов и лейкоцитов с сосудистой стенкой, в регуляции сосудистого тонуса и пассажа крови [ 146 ].

Эндотелий экранирован от патогенных воздействий эндотелиальным гликокаликсом — гелеобразным отрицательно заряженным слоем, состоящим из сульфатированных гликозаминогликанов и протеогликанов, который выполняет защитную функцию в отношении эндотелиоцитов, уменьшая воздействие на них напряжения сдвига, индуцированного потоком крови [ 71 , 146 ]. Напряжение сдвига — это сила, прикладываемая к верхнему слою ламинарно текущей жидкости, вызывающая смещение нижележащих слоев относительно друг друга в направлении прикладываемой силы [ 112 ]. В случае повышения напряжения сдвига, опосредованного через гликокаликс, эндотелий увеличивает выработку оксида азота, вызывающего вазодилатацию и снижение напряжения сдвига. Под действием напряжения сдвига эндотелиоциты существенно усиливают выработку гиалуроновой кислоты в гликокаликсе, что также уменьшает напряжение сдвига. Повреждение гликокаликса нарушает эти механизмы и реакцию эндотелия на напряжение сдвига, что может приводить к развитию тромбоза и атеросклероза [ 4 ]. Более 80 лет назад А.

Крог предложил модель транспорта кислорода в ткани, которая базировалась на процессе диффузии кислорода в направлении условного цилиндра цилиндра Крога , окружающего каждый капилляр. Эта модель продемонстрировала ограничения диффузии и смогла объяснить почему ткани с высоким уровнем потребления кислорода отличаются высокой плотностью капилляров. Также модель Крога показала, что недостаточно просто доставить к органу адекватное количество кислорода, необходимо еще и распределить его в точном соответствии с его потребностями [ 64 ]. Артериолы, которые контролируют сосудистое сопротивление в микрососудистой сети органа, а, следовательно, и приток крови, также отвечают за регуляцию распределения кислорода в пределах тканевого региона. Для обеспечения эффективного контроля, ответ микрососудов на изменяющиеся условия , например, повышенная потребность в кислороде, сниженная доставка кислорода должен быть тесно интегрирован в пределах микрососудистого русла. Клеткам эндотелия принадлежит определяющая роль в интеграции локальных стимулирующих сигналов, эта функция реализуется посредством межклеточной коммуникации в микрососудистом эндотелии [ 126 ] или трансдукцией сигнала в ответ на локальное напряжение сдвига, обусловленное изменениями микрокровотока [ 79 , 80 ].

К примеру, если сосудорасширяющий стимул возникает на уровне капиллярной сети, сосудистый эндотелий способствует проведению сигнала к артериолам, снабжающим эти капилляры, вызывая их дилатацию и тем самым увеличивая приток крови к данному региону. Это было подтверждено другими исследователями на разных органах с использованием различных методических подходов [ 47 , 142 ]. Если кислород может перемещаться таким образом из артериол в капилляры, вполне возможно существование кислородного обмена и между капиллярами с различным уровнем кислорода, между артериолами и венулами. Кроме того, количественные оценки микрокровотка продемонстрировали значительную пространственную гетерогенность капиллярной перфузии [ 46 ]. Уникальные реологические свойства эритроцитов, циркулирующих в местах ветвления микрососудов эффект Фареуса и проскальзывание плазмы в точках бифуркации способствуют проявлению достаточно широкого диапазона распределения гематокрита в капиллярах и скоростей движения эритроцитов. Гетерогенность микрососудистого гематокрита, падение сатурации кислорода в прекапиллярной зоне и диффузионный обмен кислорода между микрососудами означают, что кровоток сам по себе не может быть адекватным индикатором адекватной доставки кислорода в ткани [ 46 ].

Это приобретает особое значение в плане регуляции кислородного снабжения, в особенности в условиях патологии и при исследовании доставки кислорода в условиях in vivo. Обмен нутриентов и метаболитов требует наличия проницаемого эндотелиального барьера, контролирующего пассаж биомолекул и жидкости между кровью и интерстициальным пространством. Что касается транспорта кислорода, три типа клеток внутри сосудистой системы гладкомышечные клетки сосудистой стенки, эндотелиоциты и эритроциты выполняют согласованную работу, чтобы обеспечить адекватный транспорт кислорода к месту его потребления [ 21 ]. Соответствие потребности в кислороде и его доставки в скелетные мышцы [ 123 ] и головной мозг [ 51 ] в определенной степени изучено, хотя обсуждение механизмов в основном сосредоточено на регулировании функции кровеносных сосудов, то есть на клетки, составляющие сосудистую стенку: эндотелиоциты и гладкие миоциты. В последнее время появляется все больше свидетельств того, что эритроциты наряду с транспортной функцией способны выполнять функции детекции гипоксии и локальной регуляции кровотока в соответствии с метаболическими потребностями тканевого микрокрайона, поскольку их свойства зависят от парциального напряжения кислорода. Например, было показано, что свойства эритроцитов претерпевают существенные изменения в ответ на физические нагрузки, которые сказываются на доступности кислорода и на его потреблении тканями [ 42 ].

Гипотеза о том, что эритроциты наряду с эндотелиоцитами и гладкими миоцитами сосудистой стенки выступают в качестве равноправных участников процесса регуляции микрокровотока в соответствии с локальными потребностями тканей выдвинута относительно недавно. Внутриэритроцитарные сигнальные пути регулируют высвобождение кислорода и модифицируют реологические свойства красных клеток крови, а также высвобождение ими вазоактивных соединений в ответ на воздействие специфических лигандов, сигнализирующих о потребности в кислороде посредством активации мембранных рецепторов эритроцитов [ 21 ]. Продолжительность жизни зрелого эритроцита составляет около 120 дней, большую часть из этого времени эритроциты находятся в системе микроциркуляции, где подвергаются значительным биомеханическим и биохимическим стрессовым воздействиям. Уникальная физиология эритроцитов позволяет ему адаптироваться к этим воздействиям и успешно функционировать в сложных условиях циркуляции [ 117 ].

Процессы жизни протекают в водных средах, которые характеризуются таким параметром как PH. В норме кровь имеет слабощелочную реакцию — PH 7,35-7,45. При употреблении в большом количестве кислотных продуктов мясо, молоко, сыр, яйца, крупы, рафинированный сахар происходит закисление крови, что приводит к повышению вязкости крови. Таких, как кальций, лецитин, витамин С, магний, цинк, селен, которые принимают активное участие в процессе выработки гормонов и ферментов.

Профилактика: Употреблять в пищу продукты, содержащие перечисленные выше витамины и минералы. Например, при работе за компьютером от 15 минут отмечаются фазовые изменения состава периферической крови. Профилактика: Меньше времени по возможности проводить за компьютером, перед телевизором, за раговорами по сотовому телефону и т. Сгущают кровь: САХАР, алкоголь, гречиха, бананы, картофель, сладкая пища, жирная белковая пища, копчености, газированные напитки, арония, тысячелистник, зверобой, крапива свежие листья.

Норма содержания эритроцитов в крови Определение количества эритроцитов крови проводится при помощи общего клинического анализа крови. В норме количество эритроцитов в крови у мужчин составляет от 4 до 5. Количество эритроцитов у ребенка зависит от возраста: В первый день жизни, у новорожденного ребенка — от 4. Высокое содержание эритроцитов в крови новорожденных детей объясняется тем, что во время внутриутробного развития организму ребенка нужно больше эритроцитов, чтобы обеспечить нормальное снабжение тканей кислородом в условиях относительно низкой концентрации кислорода в крови матери. Сразу после рождения эритроциты новорожденного ребенка начинают распадаться и заменяются на новые эритроциты.

Усиленный распад эритроцитов в первые дни после рождения является причиной развития желтухи новорожденных. Уровень эритроцитов в крови во время беременности Количество эритроцитов при беременности может снижаться до 3. Уменьшение количества эритроцитов в крови во время беременности по сравнению с показателями содержания эритроцитов в крови у небеременных женщин объясняется, с одной стороны, разбавлением крови за счет задержки в организме беременной женщины воды, а с другой стороны, некоторым уменьшением образования эритроцитов из-за недостатка железа, которое наблюдается практически у всех беременных женщин. Изменения содержания эритроцитов в крови и их толкование Содержание эритроцитов в крови может изменяться в двух направлениях: снижение и увеличение содержания количества эритроцитов в крови по отношению к норме. Что значит повышение количества эритроцитов в крови? Увеличение числа эритроцитов в единице объема крови называется эритроцитозом. Вообще увеличение содержания эритроцитов в крови наблюдается довольно редко. Физиологическое повышение эритроцитов в крови возникает у людей, проживающих в горах, при длительных физических нагрузках у спортсменов, при стрессе, или при значительном обезвоживании организма. Патологическое увеличение количества эритроцитов в кров наступает при: Увеличении образования эритроцитов в красном костном мозге при болезнях крови, таких как эритремия ; У больных с эритремией обычно можно заметить ярко-красную окраску кожи лица и шеи.

Как результат повышенного синтеза эритропоэтина в почках при недостаточном содержании кислорода в крови при заболеваниях дыхательной и сердечнососудистой систем например, у больных с сердечной недостаточностью или ХОБЛ. В подобных случаях повышению количества эритроцитов в крови предшествует длинная история болезни сердца или легких. Понижение количества эритроцитов в крови Уменьшение числа эритроцитов в единице объема крови называется эритропенией. Основной причиной снижения количества эритроцитов в крови являются различные виды анемии малокровие , которые могут развиваться в результате нарушения образования эритроцитов в красном костном мозге, в результате их повышенного разрушения эритроцитов, например при гемолитических анемиях, а также при кровопотерях. Чаще всего наблюдается железодефицитная анемия, при которой недостаточное образование эритроцитов возникает при дефиците железа из-за его недостаточного поступления в организм с пищей вегетарианская диета , нарушения всасывания или увеличении потребности организма в железе часто при беременности, у детей в периоды интенсивного роста. На фоне железодефицитной анемии наблюдается не только уменьшение количества эритроцитов в крови, но и могут быть замечены другие симптомы этой болезни. Реже снижение количества эритроцитов в крови возникает при недостатке витамина В12 или фолиевой кислоты. В подобных случаях у больных кроме анемии наблюдаются нарушения походки и чувствительности покалывания и боли в руках и ногах. Усиленное разрушение эритроцитов, или гемолиз, как причина снижения количества эритроцитов в крови встречается при наследственных заболеваниях в результате нарушения строения мембраны эритроцита микросфероцитоз, овалоцитоз , гемоглобинопатиях талассемия, серповидно-клеточная анемия ; приобретенные причины гемолиза - болезнь Маркиафава-Микели, механическое повреждение мембраны эритроцитов искусственный клапан сердца, гигантские размеры селезенки у больных с циррозом , токсическое повреждение мембраны эритроцитов ядовитые грибы, укус змеи, соли тяжелых металлов.

Уменьшение количества эритроцитов также возникает при острых массивных кровопотерях в результате кровотечений при травмах, операциях, язве желудка , хронические кровопотери приводят к железодефицитным анемиям. Определение количества эритроцитов в крови осуществляется во время общего клинического анализа крови. Питание при повышенной вязкости крови Разжижению крови способствует диета и особый питьевой режим. Следует пить не менее 1,5 л жидкости в день. Полезнее всего зеленый чай или травяные чаи по рекомендации лечащего врача , натуральные овощные и фруктовые соки, вода. Особенно рекомендуется пить натуральный сок из красного винограда. Из-за высокого содержания биофлавоноидов он считается бальзамом для сердечно-сосудистой системы. Дополнительным источником омега-3-ненасыщенных жирных кислот является льняное масло, которое можно принимать по 1 ст. Простагландины, синтезируемые из этих кислот, уменьшают уровень холестерина и разжижают кровь.

Еще одним важным источником жиров является нерафинированное оливковое масло холодного отжима, содержащее большое количество биологически активных веществ. Для разжижения крови рекомендуются продукты, содержащие аминокислоту таурин. При тепловой обработке количество таурина в пище резко снижается. Как определить разжижить вязкость крови в домашних условиях У нас в России есть эффективное средство: таволга вязолистная. Берется 1 чайная ложка, заливается стаканом кипятка, настаивается в течении 5 минут. Пить по половина стакана 3-4 раза в день до еды. Таволога помогает именно для улучшения мозгового кровообращения. Это рецепт Виктора Костерова. Он также предлагает для разжижения крови применять донник лекарственный желтый.

Берется 1 чайная ложка на 200 мл. Человек сам в домашних условиях может определить густая у него кровь или нет следующим приемом: надеть медицинские перчатки, протираем все спиртом, освобождаем 4-ый пальчик, обрабатываем так же спиртом, прокалываем одноразовой стерильной иголкой, такой, которой пользуются при заборе анализов крови. Берем 2-е капли крови на стекло. Размазываем тонким слоем на стекло. Кровь имеет обыкновение образовывать через некоторое время пленку. Смотрим кровь на стекле каждые 30 секунд. Если эта пленка образовалась после 5 минут, то в норме. Если до 5-ти минут, то свертываемость повышена. Самый быстрый способ очищения крови: сосите каждое утро во рту 1 столовую ложку растительного масла до состояния белой прозрачной жидкости, затем выплюньте, ни в коем случае не проглатывайте.

Выводятся токсины, накапливаемые в организме за ночь.

В составе сигаретного дыма содержатся вещества, повышающие риск тромбообразования и влияющие на густоту субстанции в сосудах. Злоупотребление алкоголем. Спиртные напитки способствуют быстрому и сильному обезвоживанию организма. Ученые подсчитали, что соотношение выпитого спиртного и жидкости, которую он вывел из организма, равно 1 : 4. Поэтому если вовремя не восстановить гидробаланс, доля жидкой части в сосудах уменьшается. Постельный режим на протяжении длительного времени.

Послеоперационный, а также некоторые проблемы со здоровьем могут вынудить человека соблюдать постельный режим. Со временем малоподвижность ведет к нарушению кровотока и застою крови, что в итоге вызывает ее сгущение. Сильное переохлаждение или ожоги. Экстремальные температурные воздействия ведут к сильному стрессу, обезвоживанию организма, нарушению функции кроветворения, что также повышает риск возникновения гиперкоагуляционного синдрома. Пересадка органов, операция на сосудах или их травмирование, установка имплантов клапанов, диализных шунтов, венозных катетеров и т. Любое воздействие на сердце или стенки сосудов ведет к образованию неровностей, а это повышает риск усиленного образования тромбов. Любой воспалительный процесс, особенно если он носит хронический характер, провоцирует повышение количества лейкоцитов, фибриногена, белков и холестерина.

Когда этих компонентов очень много, кровь становится вязкой.

Показатель густой крови в анализе крови: что значит и что делать?

При лечении повышенной вязкости крови особое внимание следует уделить причинам ее возникновения и диагностике. В результате кровь сгущается, повышается ее вязкость, изменяются реологические свойства, количество клеток на единицу объема относительно увеличивается. Густая кровь обладает повышенной вязкостью – это становится причиной застоя крови в сосудах, повышает риск тромбообразования. Уровень вязкости напрямую зависит от численности эритроцитов, протромбина, фиброгена и иных составляющих.

Что делать если у человека густая кровь. Причины густой крови

Вязкость крови человека регулируется целым рядом факторов. Наиболее часто предрасполагающими факторами для развития синдрома повышенной вязкости крови становятся: повышенная свертываемость крови; увеличение количества эритроцитов; увеличение количества тромбоцитов; повышение уровня гемоглобина; обезвоживание; нехватка витаминов и минералов, которые участвуют в синтезе гормонов и ферментов; большое количество потребляемого сахара и углеводов. В некоторых случаях синдром повышенной вязкости крови протекает скрыто бессимптомно и обнаруживается только после оценки результатов анализа крови. Синдром повышенной вязкости крови не является заболеванием, но при наличии серьезных патологий может вызывать тяжелые и грозные осложнения.

Чаще кровь сгущается у людей пожилого возраста, но в последние годы этот синдром все чаще выявляется у лиц среднего возраста и молодых.

И что сосуд, подходя непосредственно к органу, становится капилляром, т. И между этими капиллярами происходит обмен питательными веществами. Говоря простым языком, у эритроцита — четыре молекулы железа стульчика , на которых есть одна свободная связь.

Связь — это, условно говоря, свободная рука, при помощи которой железо может что-то притянуть. И она притягивает кислород, который эритроцит получил в легких. Дошли они до сердца и что происходит? Через стенку сосуда кислород просачивается в межклеточную воду и растворяется в ней.

А здесь уже находится растворенный углекислый газ, который просачивается через стеночку этого же сосуда и занимает место кислорода. На молекулу эритроцита может сесть 4 атома. И эритроцит уходит снова в легкие. Доходит до легких, снова углекислый газ просачивается в трубочку и в пузыречек, а там уже находится кислород, который садится на этот свободные стульчики.

И кровь побежала снова. Нет у крови более серьезных функций. У крови очень много функций, но эта — самая серьезная — перенос кислорода. Те, кто видел кровь на темнопольном микроскопе, знают: эритроциты светятся, вокруг них своеобразная аура — это кислород, присоединенный к каждой молекуле железа.

Это основная функция крови. Сосуд нигде не начинается и нигде не заканчивается. Сосуд начинается в сердце и заканчивается в сердце. Он замкнутый.

Но он весь абсолютно дырявый, особенно на уровне капилляров. Что находится в крови? Там у нас эритроциты и лейкоциты. Лейкоциты Это одноклеточное существо, которое выполняет свою функцию.

Так лейкоцит, фактически является сознательной клеткой. Если, например, появились бактерии в сердце, то он через стенку сосуда проникнет в ткань, воду, по ней доплывает до бактерии и съедает ее. В результате образуется гной, который мы называем ревмокардитом, или миокардитом, или миокардиодистрофией, и т. А дальше лейкоцит будет думать, куда ему уйти.

Если его ферментная база хороша, т. Если она не очень, он уйдет напрямую в лимфу, и пойдет через лимфоузлы на выброс — в нос, в рот, в гортань, потовые железы, либо через половые пути. Что еще растворено в крови? В крови растворены клеточные питательные вещества.

А в кишечнике огромное количество белков, растворенных и нерастворенных. Белки делятся на 28 аминокислот. У кишечника есть коридор, и у сосуда есть коридор. Эти коридоры совпадают.

Как только эти аминокислоты растворились, они через этот коридор по одной проходят в кровь. Итак, в крови растворены 28 аминокислот, 15 минералов. Просто так минералы плавать не могут, иначе они образуют просто залежи железа или меди, они тоже соединены с аминокислотами в конгломератах. Жирные кислоты — три основные и несколько других, ферменты — 3 тысячи.

Все это растворено в крови. Кровь является той питательной средой, из которой клетка берет жизненно важные для нее вещества. Таким образом, вторая функция крови — питательная. Что получается: кровь пришла вместе с эритроцитами и кислородом.

Здесь она называется артериальной. Если она уже прошла через орган и набрала углекислый газ, она называется венозной. И артериальный капилляр автоматически превращается в венозный капилляр. Венозная кровь идет к легким, на смену ей становится артериальная.

И это называется круговорот крови в организме. Как круговорот воды в природе. Вот это принципиальная схема работы сердечно-сосудистой системы. Сердце выталкивает кровь, и она идет дальше.

Но если на пути крови встретится печень, забитая лямблиями и описторхами, то кровь не поднимется, а скопится внизу. Как следствие: варикозное расширение, тромбофлебит, сосудистые звездочки, геморрой и т. Кровь должна циркулировать беспрепятственно. Так же сердцу необходимо питание.

Представьте себе две половинки сердца. Половинка сократилась — кровь ушла. Причем сократилась одномоментно: сердце сжалось, вторая половина в этот момент расширилась — кровь зашла. Вторая половина сократилась — кровь ушла, первая разжалась — кровь зашла.

Все, ничего больше не происходит. Если в крови есть 28 аминокислот, 15 минералов, 12 витаминов, 3 жирные кислоты и 7 ферментов 28-15-12-3-7 , то так и будет. А если кровь идет сгустками, если эритроциты прилипли друг к другу из-за нарушенного кислотно-щелочного равновесия, появляются перебои в работе всей системы. Эритроцит самостоятельно ни к чему не примагничивается, у него своя аура.

О том, что кровь при определенных условиях проявляет свойства неньютоновской жидкости известно достаточно давно и подтверждено многочисленными вискозиметрическими измерениями in vitro [ 64 ]. Однако реальное движение крови в микрососудистой сети, характеризующейся разветвленностью и изменяющейся геометрией, значительно отличается от существенно упрощенных условий оценки реологии крови in vitro. Свой вклад вносит и активность эндотелиальных клеток например, их лиганд-рецепторное взаимодействие с клетками крови и гликокаликс, покрывающий тонким слоем люминальную поверхность сосуда [ 89 ]. Реология крови известна как важная детерминанта тканевой перфузии и, в соответствии с уравнением Пуазейля, гемодинамическое сопротивление в сосудистой сети с постоянной геометрией длиной и радиусом сосуда прямо пропорционально вязкости крови [ 23 , 24 ]. Существует множество механизмов, напрямую контролирующих калибр кровеносных сосудов, которые регулируют так называемую анатомическую составляющую сопротивления кровотоку посредством нейрогенных и биохимических сигналов. Дополнением к ним служит вязкость крови, которая является относительно постоянной в условиях нормы и может претерпевать изменения при повреждениях, заболеваниях и адаптации к изменяющимся условиям [ 1 , 151 ]. Если исходить из формулы Пуазейля, рост вязкости крови должен способствовать увеличению гидродинамического сопротивления кровотоку и наоборот, при снижении вязкости сопротивление будет уменьшаться. Ток крови продуцирует напряжение сдвига, воздействующее на мембраны эндотелиальных клеток, что ведет к выработке ими оксида азота и простациклина, это феномен так называемой биохимической механотрансдукции, который лежит в основе ауторегуляторного феномена — потокзависмой вазодилатации и регуляции давления крови с изменением ее вязкости [ 81 ]. Экспериментальные измерения вязкости крови человека демонстрируют, что с изменением скорости сдвига кажущаяся вязкость крови заметно меняется.

При скоростях сдвига выше 100 с—1 типичных для многих кровеносных сосудов in vivo отклонение поведения крови от ньютоновского становится незначительным, и кажущаяся вязкость крови приближается к некоторому постоянному значению. Однако при уменьшении скорости сдвига вязкость крови постепенно возрастает. Общей причиной зависимости кажущейся вязкости от скорости сдвига является изменение ее внутренней структуры, поэтому такая вязкость называется структурной. В зоне низких скоростей сдвига, характерных для кровотока в венулах и венах, формируются структуры из агрегатов эритроцитов. Зависимость вязкости крови от диаметра сосудов имеет сложный характер. В соответствии с эффектом Фареуса—Линдквиста, кажущаяся вязкость крови снижается при уменьшении диаметра сосуда менее 0. При этом, чем меньше калибр сосуда, тем значительнее снижение вязкости крови и, в конечном счете, она приближается к вязкости плазмы за счет образования пристеночного слоя плазмы, аксиального дрейфа эритроцитов и снижения гематокрита. Однако при значениях диаметра менее некоторого критического уровня наблюдается обратный эффект — вязкость крови и сопротивление кровотоку существенно возрастают. Величина критического диаметра в значительной степени определяется внутренней вязкостью эритроцитов и степенью их агрегации.

Внезапный и кратковременный рост вязкости крови может быть обусловлен резким изменением агрегируемости эритроцитов или тромбоцитов, изменением уровня рН. Даже начальные стадии процесса свертывания крови способствуют повышению степени агрегации эритроцитов [ 64 ]. Небольшие изменения двух или более факторов, влияющих на реологию крови, способны вызвать усиленное синергичное повышение вязкости и увеличение критического диаметра, при котором проявится обратный эффект Фареуса—Линдквиста [ 124 ]. Такие многократно усиленные по механизму положительной обратной связи даже локальные нарушения могут спровоцировать остановку кровотока. Поскольку количественные измерения реологических свойств крови в системе микроциркуляции в условиях in vivo на сегодняшний день составляют определенную методическую проблему, основные представления о реологии крови базируются на измерениях вязкости in vitro с использованием ротационных либо капиллярных вискозиметров. Вязкость крови как свойство этой жидкой ткани кроме вышеназванных внешних факторов зависит от вязкости плазмы, показателя гематокрита объемной концентрации ее форменных элементов, преимущественно эритроцитов и от микрореологических свойств красных клеток крови — их деформируемости и агрегации [ 7 , 64 ]. Показатель гематокрита Очевидно, что концентрация взвешенных частиц во многом определяет вязкость суспензии. Для крови — это показатель объемной концентрации форменных элементов по большей части эритроцитов — гематокрит. В ряде случаев при чрезмерной агрегации тромбоцитов возможен и их вклад в текучие свойства крови; лейкоциты также могут значительно влиять на реологические свойства крови, если их объемная фракция намного выше нормы [ 64 ].

Однако в физиологических условиях основное влияние на текучесть крови и транспорт кислорода оказывает концентрация эритроцитов — самого многочисленного пула клеток крови. Соотношение вязкости крови и гематокрита важно в оценке кислородтранспортной функции крови и эффективности доставки кислорода в ткани [ 136 ]. На транспорт кислорода оказывают влияние как сосудистые, так и реологические факторы. Вязкость плазмы Характерной особенностью крови как ткани является отсутствие специальных межклеточных структур, объединяющих ее форменные элементы в единое целое, — они находятся во взвешенном состоянии в окружающей их жидкой среде — плазме. Плазма представляет собой достаточно сложную биологическую среду, в состав которой входят белки, различные соли электролиты , углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и другие биологически активные соединения, растворенные газы. Белки плазмы, выполняющие ряд важнейших функций, в гемореологическом отношении важны по следующим причинам: во-первых, из-за своей относительно высокой концентрации в плазме, крупных размеров и зачастую асимметричной формы молекул они вносят весомый вклад в вязкость плазмы, а, следовательно, и в вязкость цельной крови. Значение фракции фибриногена неоспоримо, тем более что концентрация этого протеина повышается в условиях патологии. С точки зрения физики цельная кровь — это вязкоупругая среда, в которой плазма реализует ее вязкий компонент. Внутри этой системы происходит передача напряжения сдвига на упругие элементы — эритроциты — через жидкую фазу — плазму.

Следовательно, ее вязкость и плотность оказывают влияние на деформацию эритроцитов, обеспечивая им эффективный пассаж через микрососуды [ 7 ]. Деформируемость эритроцитов Известно, что эритроциты обладают уникальной способностью значительно изменять свою форму деформироваться при прохождении через микрососуды, диаметр которых сопоставим или даже меньше диаметра самих клеток [ 2 , 65 ]. Такая способность эритроцитов к деформации ведет к тому, что в потоке клетки вытягиваются, это их свойство вносит свой вклад в интегральную вязкость крови при высоких скоростях сдвига, и в этих условиях кровь может рассматриваться как ньютоновская жидкость, вязкость которой зависит от деформируемости эритроцитов наряду с показателем гематокрита и вязкостью плазмы. Классические представления о деформируемости эритроцитов базируются на визуализации микрокровотока с помощью биомикроскопии; на основании этих наблюдений был сделан вывод о том, что деформация эритроцитов происходит как непрерывная вязкая деформации, которую автор этой гипотезы H. Такой вид деформации определяется вязкостью цитоплазмы и отношением площади поверхности к объему эритроцита. В настоящее время используются методы микрофлюидики и искусственной ригидификации эритроцитов, которые позволяют по-иному взглянуть на феномен деформируемости эритроцитов, его сложность и недостаточную изученность. В ряде экспериментов по моделированию микрокровотока в разных условиях при переменных скоростях сдвига и разном соотношении объемных фракций крови продемонстрировано, что в ходе деформации эритроциты подвергаются разнообразным морфологическим модификациям [ 85 ]. Предложены возможные механизмы этого сложного перехода от одной формы клетки к другой при повышении напряжения сдвига [ 92 ]. В современных экспериментальных исследованиях по изучению деформируемости эритроцитов делается акцент на сложности и комплексном характере физиологических механизмов этого процесса.

До настоящего времени наши знания о регуляции деформируемости эритроцитов базируются на измерениях их деформации при вхождении в узкий канал либо в условиях движения в потоке при заданных сдвиговых условиях течения скорости сдвига или напряжения сдвига. Эти два подхода, как представляется, отражают различные клеточные механизмы, обеспечивающие деформацию. Было замечено, что состояния со значительными нарушениями деформируемости эритроцитов практически совпадают с условиями проявления эриптоза — программируемой гибели эритроцитов, процесса аналогичного апоптозу, но имеющего специфические для безъядерных эритроцитов особенности. Это, например, гипоксия, железодефицитные состояния, злокачественные новообразования, дегидратация, метаболический синдром, гемолитическая анемия, сердечная недостаточность, сахарный диабет, хроническая болезнь почек, малярия, сепсис, серповидноклеточная анемия и т. Исходя из концепции эриптоза, изменения деформируемости в физиологических условиях например, при мышечной деятельности и при патологических состояниях например, при сахарном диабете, серповидноклеточной анемии предложено рассматривать как принципиально разные процессы [ 33 ]. Оптимальной деформируемость оказывается в физиологических пределах таких физико-химических показателей окружающей среды плазмы крови как осмолярность и рН, при отклонении в ту или иную сторону деформируемость снижается. Не менее важно для поддержания нормальной морфологии и деформируемости эритроцитов присутствие альбумина, который обладает способностью не только предотвращать, но и устранять уже имеющий место эхиноцитоз [ 115 ]. Деформация эритроцитов повышает гидродинамическое перемешивание цитоплазмы, что ведет к усилению внутриклеточной конвекции молекул кислорода, дезокси- и оксигемоглобина. Это благоприятствует внутриэритроцитраной диффузии кислорода и является одним из механизмов внутриклеточного транспорта кислорода, обусловливающим высокий коэффициент переноса кислорода при относительно низком коэффициенте диффузии.

Ухудшением деформируемости эритроцитов обусловлено развитие застойных явлений капиллярного кровотока и, как следствие, возникновение тканевой гипоксии. За счет перемешивания содержимого эритроцитов в текущей крови деформируемость в большей степени способствует диффузии кислорода, чем облегченная диффузия [ 2 ]. Агрегация эритроцитов Эритроциты человека в физиологических условиях объединяются в линейные и разветвленные агрегаты при снижении скоростей сдвига до критического уровня. Обратимая умеренная агрегация красных клеток крови человека необходима для нормального кислородного питания тканей и удаления из них продуктов метаболизма. Образование агрегатов по типу монетных столбиков способствует обмену кислородом между эритроцитами. В монетных столбиках и происходит усреднение их степени оксигенации для более эффективного восприятия кислорода в легких [ 14 ]. Агрегация эритроцитов оказывает многофакторное комплексное влияние на сопротивление кровотоку in vivo, которое может реализовываться посредством следующих механизмов: 1 за счет уменьшения упорядоченности линейного течения при увеличении размера движущихся частиц [ 22 ]; 2 повышением затрат энергии на разобщение клеток в условиях микроциркуляции [ 152 ]; 3 агрегация способствует аксиальному дрейфу эритроцитов и образованию краевого плазменного слоя [ 41 ]. Повышенное аксиальное скопление эритроцитов ведет к снижению локальной вязкости в пристеночной зоне сосуда [ 137 ], тем самым модулируя активность сосудистых регуляторных механизмов, активируемых механическим стрессом. Это выражается в ингибировании генерации NO эндотелием [ 25 ], затруднении процесса деоксигенации и снижении отдачи кислорода тканям при существенном увеличения пристеночного слоя плазмы, выступающего в качестве барьера для диффузии кислорода [ 139 ].

Агрегация эритроцитов — достаточно сложный феномен, гемодинамические эффекты которого многосторонни и неоднозначны. Такие эффекты как проскальзывание skimming плазмы, эффект Фареуса, микрососудистый гематокрит скорее улучшают микрокровоток, однако исходя из влияния агрегации эритроцитов на внутрисосудистый профиль их скоростей, можно заключить, что рост агрегации способствует снижению поток-зависимой вазодилатации, тем самым ухудшая микрокровоток [ 158 ]. Значение агрегации эритроцитов особенно возрастает в условиях патологии, поскольку при этом изменяются степень агрегации, скорость агрегатообразования, устойчивость образующихся агрегатов, их размеры и морфология [ 1 , 11 ]. Повышенная степень агрегации ведет к ухудшению оксигенации тканей, способствует развитию ишемии и тромбоза, приводит к нарушению микроциркуляции органов и тканей [ 97 ]. В экспериментах in vivo показано, что при супранормальных показателях процесса агрегатообразования эритроцитов имеет место существенное уменьшение плотности функционирующих капилляров, в то время как при физиологических уровнях агрегации такое явление возможно только при снижении артериального давления [ 78 ]. Ангиогенез на уровне микроциркуляции отличается стохастическим характером, при этом формируется микрососудистая сеть с мельчайшими сосудами — капиллярами, диаметр которых сопоставим с размерами клеток крови порядка 5 мкм [ 122 ]. Если системное кровообращение имеет определенную структуру и строение, то на уровне микрокровотока рост и изменения сосудистой сети происходят под управлением локальных тканевых факторов [ 101 , 154 ]. Сократительная активность гладких миоцитов сосудистой стенки обеспечивает поддержание оптимального диаметра сосудов в системе микроциркуляции и сопряжена с их способностью поддерживать сосудистый тонус в течении длительного времени. На мышечный компонент сосудистой стенки непосредственно воздействуют основные тонусформирующие факторы в системе микроциркуляции — нейрогенный, миогенный и эндотелиальный механизмы регуляции просвета сосудов.

В физиологических условиях собственно миогенный компонент регуляции в чистом виде локализован на прекапиллярах и сфинктерах, нейрогенная регуляция затрагивает артериолы и артериоло-венулярные анастомозы, мишенью эндотелиальной регуляции диаметра сосудов являются по большей части более проксимальные сосуды мелкие артерии, крупные артериолы [ 5 ]. Особое место в регуляции тонуса микрососудов наряду с нейрогенной и гормональной регуляцией принадлежит локальной местной регуляции, поскольку именно она способна оперативно управлять кровотоком в соответствии с постоянно изменяющимися потребностями тканей. И это служит дополнительным аргументом в пользу представлений о микроциркуляторно-тканевой системе, где все подчинено решению основной задачи — обеспечению оптимального уровня жизнедеятельности тканевого региона. На уровне обменных сосудов капилляров , не имеющих сократительных элементов, объектами регуляции выступают число функционирующих перфузируемых капилляров, отражающих площадь обменной поверхности, и те процессы обмена, которые реализуются через сосудистую стенку массоперенос растворенных веществ [ 5 ]. Сосуды микроциркуляторного русла почти полностью выстланы эндотелиальными клетками, которые фенестрированы и содержат поры, связь между ними осуществляют различные молекулы, включая кадгерины, а также токопроводящие щелевые контакты, которые обеспечивают восходящую электрическую связь между эндотелиоцитами. Эти эндотелиальные структуры различаются по плотности и морфологии в сосудах различных органов. Эндотелиоциты в симбиозе с гладкомышечными клетками сосудистой стенки влияют на микрососудистый кровоток преимущественно за счет регуляции сосудистого тонуса артериол и прекапиллярных сфинктеров. Одной из важнейших субклеточных структур эндотелия, опосредующей его функцию, является гликокаликс, присутствующий на люминальной поверхности эндотелия [ 71 , 146 ]. Гликокаликс представляет собой гелеобразный слой толщиной 0.

Гликокаликс играет ключевую роль в поддержании гомеостаза сосудов, контролирует проницаемость сосудов и тонус микроциркуляторного русла, предотвращает микрососудистый тромбоз и регулирует адгезию лейкоцитов. Принято считать, что целостность гликокаликса является основной детерминантой сосудистого барьера, однако в исследованиях Guerci P.

При условии, что нет серьезных патологий почек. Дыхательная недостаточность Процесс сложный. Расстройства системы приводят к росту концентрации форменных клеток. Это происходит из-за того, что легкие и бронхи не поставляют достаточного количества кислорода. Отсюда развивается несколько опасных явлений: Окисление клеток крови. Их распад. При этом высвобождается огромное количество веществ. В том числе и тех, которые отвечают за сгущение крови.

Организм при длительном течении подобного процесса стремится компенсировать дефицит кислорода. Синтезирует больше эритроцитов и тромбоцитов. Гематокрит повышается, наступает ухудшение состояния. Лечение специфическое. Пациентам назначают глюкокортикоиды Преднизолон, Дексаметазон или более слабые аналоги. Также бронхолитики. Будь то Сальбутамол или Беродуал, Эуфиллин. Важно скорректировать газообмен. В качестве меры для борьбы с нарушениями кровеносной системы, назначают антикоагулянты, антиагреганты. На основе Аспирина и современные, безопасные аналоги.

Тиклопидин и прочие. В зависимости от расстройства, врачи назначают и инвазивные процедуры. Вроде промывания тканей посредством бронхоскопии. Но это крайняя мера. Она показана при бронхоэктатической болезни, запущенных инфекционных процессах. Атеросклероз При подобном расстройстве растет концентрация холестерина и прочих жирных соединений. Считать, что вредные вещества откладываются только на стенках сосудов — ошибка. На деле же забывают, что холестерин сначала попадает в кровеносное русло и только потом формирует бляшки. Спустя месяцы, а то и годы. Когда липиды проникают в кровь — происходит рост объемов гематокрита, а жидкой фракции становится меньше, эта основная причина сгущения крови.

Такой патологический процесс развивается куда быстрее. В разы. Отсюда возможные тромбозы. Чем выше количество вещества, липидов, тем хуже. Чтобы скорректировать состояние, нужны препараты нескольких типов. Средства против холестерина. Вроде Атроиса, Аторвастатина. Это так называемые статины. Они быстро и качественно выводят липиды из организма. Не позволяют им откладываются на стенках сосудов.

Если концентрация холестерина не падает на фоне приема статинов. Гемфиброзил как возможный препарат. Никтоиновая кислота. Воздействует на отдельные разновидности гиперлипидемии. По необходимости пациентам назначают витаминно-минеральные комплексы. Чтобы скорректировать возможный дефицит питательных веществ. Особенно, если показана диета с низким содержанием жиров. Прием медикаментов Очередная причина повышения вязкости крови. Некоторые лекарства крайне негативно сказываются на состоянии организма. Сюда можно отнести такие средства как: Противовоспалительные.

При длительном применении развиваются загустение крови. При этом, не все производители описывают подобные расстройства. Стоит быть осторожнее и не принимать такие средства дольше 3-5 дней. Дальше нужно обращаться к врачу. Оральные контрацептивы. Таблетки против зачатия. Бесконтрольный прием — настоящий бич современных молодых женщин. Помимо того, что это непосредственная причина густой крови, такое самолечение провоцирует еще и нарушения иммунитета, гормональные сбои. Мочегонные препараты. Выводят большое количество жидкости.

По этой причине, часть плазмы выходит из организма, а гематокрит, напротив, активно растет, в итоге густота крови повышается. Особенно опасен прием петлевых диуретиков вроде Фуросемида, Торасемида и аналогичных. При длительном бесконтрольном употреблении развивается почечная недостаточность. Гормональные лекарства. Применяются для терапии аутоиммунных процессов. Например, сюда относят Преднизолон, Дексаметазон, Беклазон, Бетаметазон. Наименований много.

Хирург Ювченко объяснил, почему кровь может стать густой или жидкой

Признаки повышенной вязкости крови могут быть различными и зависят от степени этого состояния. Увеличение вязкости крови приводит к тому, что некоторые кровяные клетки не могут полноценно выполнять свои функции, а некоторые органы перестают получать необходимые им вещества и не могут избавляться от продуктов распада. От показателей вязкости крови зависят все процессы, протекающие в клетках нашего организма.

«Густая кровь»

  • Записаться на прием
  • Вязкость крови в норме
  • 8 признаков густой крови, которые нельзя игнорировать ни в каком возрасте
  • Диета при густой крови, разжижающие продукты питания -

Показатель густой крови в анализе крови: что значит и что делать?

Так ли повышенная вязкость крови влияет на здоровье и какую опасность она может нести? Между 2 цилиндрами размещается кровь, которая перемещается по прибору за счет своего свойства вязкости. Повышает вязкость крови нормальный питьевой режим, отказ от приема длительных горячих ванн, своевременное снижение температуры при различных заболеваниях. Уровень вязкости напрямую зависит от численности эритроцитов, протромбина, фиброгена и иных составляющих.

Чем опасна густая кровь, причины и лечение мужчин, женщин и детей

Уровень вязкости (густоты) крови — важный показатель, от которого во многом зависит состояние нашего здоровья. Этим медицинским термином обозначают документ, содержащий результаты тромбоэластографии — исследования, позволяющего отследить все этапы изменения вязкости крови. Вероятность развития осложнений зависит от причины, которая спровоцировала повышение вязкости крови. Показатель вязкости крови говорит о том, сколько прослужат сердце и сосуды. Вероятность развития осложнений зависит от причины, которая спровоцировала повышение вязкости крови. Вязкость крови как свойство этой жидкой ткани кроме вышеназванных внешних факторов зависит от вязкости плазмы, показателя гематокрита (объемной концентрации ее форменных элементов, преимущественно эритроцитов).

Похожие новости:

Оцените статью
Добавить комментарий