Новости цифровая медицина

Цифровые медицинские карты позволяют медработникам получать онлайн-доступ к полной истории болезни пациента, что, в свою очередь, улучшает диагностику, лечение и мониторинг. Вячеслав Бурий, медицинский директор «ГК МедСтандарт», руководитель Центра медицинских компетенций: ИИ уже сегодня позволяет повысить точность и скорость диагностики. Основное препятствие, мешающее развитию цифрового здравоохранения консервативность медицинского сообщества и недоверие к новым технологиям. Цифровые медицинские решения показывают свою эффективность при постановке диагнозов и лечении заболеваний, а также в профилактике и формировании ЗОЖ.

Thank you!

Однако чем быстрее мы будем двигаться, тем лучше». По мнению советника президента по Интернету, проникновение IT-технологий в медицинскую сферу — это неизбежный процесс. Это и улучшает качество сервиса, и помогает больным, и формирует критичные взгляды», — добавляет Клименко. Пока мы не объединим данные, мы не сможем привнести в медицину те технологии, которые у нас находятся на мировом уровне». Сергей Краевой: Мы избавим врачей от бумажной волокиты! Продолжая тему телемедицины, заместитель министра здравоохранения РФ Сергей Краевой отмечает, что главным достижением принятого Государственной думой закона является то, что в России наконец появилось нормативное поле.

Читайте также:Ещё семь отделений «скоропомощников» записали видеообращения к президенту «Мы ушли от «дикого» предложения и того, что у каждого свое понимание телемедицины, — поясняет свою мысль замминистра. А чтобы донести услугу, нужно поставить диагноз, назначить лечения, проконтролировать качество и эффективность лечения и результат этого лечения. Он его осматривает, назначает анализы, потом с ним беседует. Все это делается непосредственно, лично. В Москве это сделать несложно.

ВОЗ считает, что технологичная медицина должна развиваться как органичная экосистема, которая обеспечит всеобщий охват услугами здравоохранения. Организация отмечает, что наименее развитые страны могут сталкиваться с препятствиями при цифровизации. Чтобы их преодолеть, предлагается развивать инфраструктуру, увеличивать человеческий потенциал и привлекать инвестиции1. Основные направления инновационной деятельности — развитие регенеративной и ядерной медицины, разработка персонализированных схем лечения и использование телемедицинских решений2. Топ-10 инноваций в здравоохранении В медицине используются умные девайсы, алгоритмы на основе искусственного интеллекта, больничные роботы — и это далеко не полный список технологий, способных изменить подход к диагностике и лечению в ближайшем будущем. Ниже представлен топ-10 медицинских инноваций, привлекательных для специалистов и пациентов.

Искусственный интеллект Искусственный интеллект ИИ — это имитирование компьютером логики и мыслительных процессов человека для решения различных задач. Машинное обучение ML — одна из ветвей ИИ — включает процессы, с помощью которых компьютер получает и распознаёт данные. Затем машина делает предсказания на основе выявленных зависимостей3. ИИ — помощник учёных и врачей в разных областях медицины4: управление электронными медицинскими данными; планирование медикаментозного и хирургического лечения; персонализированная медицинская помощь; разработка лекарств; проведение виртуальных консультаций. ИИ снижает нагрузку на систему здравоохранения. Больше пациентов получают своевременную помощь и реже сталкиваются с тяжёлыми осложнениями5.

Решения от СберМедИИ помогают врачам на первичном приёме, при проведении лабораторной и инструментальной диагностики. Алгоритмы ИИ автоматизируют рутинные процессы и снижают нагрузку на медицинский персонал. Диагноз обязательно верифицирует врач, при необходимости это может сделать подключённый консультант MDDC. Наиболее сложные случаи разбирают специалисты экспертного центра мониторинга. Медицинская робототехника Может ли робот выполнять медицинские операции? Этим вопросом учёные задавались с 1970-х годов.

Первые медицинские роботы в хирургии появились как космические и военные проекты. Они совершенствовались и постепенно внедрялись в операционные. Роботы помогают проводить сложные хирургические вмешательства6. Взаимодействие человека и робота — принцип, который реализован в хирургической роботизированной системе6: Хирург с помощью тактильного интерфейса управляет конечностью робота. Он наблюдает за ходом операции через монитор и оптические каналы. На экране отображается операционная область с внутренними органами пациента и инструменты.

На изображение может накладываться виртуальная трёхмерная модель, которая служит ориентиром для хирурга. Её создают заранее, при подготовке к операции. Роботизированная конечность с инструментом распознаёт движения рук хирурга и повторяет их. Для чего используются роботы в медицине7: хирургическое лечение грыжи; бариартрическая операция для помощи пациентам с избыточной массой тела; удаление мочеполовых органов, поражённых опухолью; колоректальная и кардиоторакальная хирургия; удаление опухолей головы и шеи. Инновация позволяет проводить малоинвазивные операции. Хирург затрагивает меньше здоровой ткани, что снижает травматичность вмешательства и улучшает клинический исход.

Прооперированные таким образом пациенты теряют меньше крови, быстрее выписываются из больницы и возвращаются к привычной жизни8,9. Ещё роботы задействованы в программах реабилитации. Они общаются с пациентами и успокаивают их, оказывая положительное эмоциональное воздействие. Роботы участвуют в больничной логистике: доставляют бельё, еду и медикаменты10. Носимые устройства для мониторинга здоровья Смарт-часы из аксессуара превращаются в миниатюрный диагностический комплекс. Они не только показывают время, но и выполняют множество других функций: от измерения количества пройденных шагов до анализа важных биологических показателей.

Технология распознаёт параметры здоровья благодаря встроенным датчикам и программному обеспечению. Чтобы гаджет работал корректно, он должен располагаться близко к коже11. В последние годы смарт-часы всё чаще используют в рамках медицинских исследований. В том числе прибор помогает отслеживать состояние пациентов: с неврологическими заболеваниями. Мониторинг с помощью носимых устройств проводится у пациентов с болезнью Паркинсона, болезнью Альцгеймера, эпилепсией и инсультом. Устройство анализирует изменения голоса и речи, двигательные нарушения, регистрирует судороги12; с сердечно-сосудистыми заболеваниями.

Недостаток физических упражнений — один из кардиологических факторов риска13. Девайс помогает объективно оценить пройденное расстояние и физическую активность в течение дня. Эти данные могут стать для пациента убедительным аргументом в пользу изменения образа жизни. Устройство наблюдает за сердечным ритмом пользователя. В будущем ещё больше информации дадут датчики артериального давления, биохимические и биомеханические сенсоры. Производители совершенствуют их для использования в медицине14; Также смарт-часы улучшают приверженность медикаментозной терапии и диете.

Устройство отслеживает движения пациента при глотании и жевании и оценивает, сколько времени он ел. Смарт-часы напоминают, когда нужно принять лекарство12.

Диагностические инструменты анализируют огромные объемы данных о пациенте, включая медицинские снимки, результаты анализов и истории болезни, помогая врачам ставить точные и своевременные диагнозы. Алгоритмы машинного обучения позволяют выявлять закономерности и аномалии, которые порой просто невозможно отследить невооруженным глазом. Особенно это касается обнаружения рака, диабета и сердечно-сосудистых заболеваний. Робототехника Роботизированная хирургия совершает революцию в операционной. Врачи получили возможность выполнять сложные операции с помощью автоматических систем, обеспечивающих улучшенную визуализацию и ловкость рук. Так, аппарат da Vinci, разработанный компанией Intuitive Surgical, считается одним из пионеров в данной области. Эта роботизированная платформа позволяет хирургам проводить операции с крошечными разрезами и 3D-визуализацией, сводя к минимуму травматизацию тела пациента.

Одно из наиболее значимых преимуществ роботизированной хирургии — уровень точности, ведь даже у самых опытных врачей дрожат руки. Робототехника позволяет устранить это, обеспечивая устойчивость движений. Эта функция особенно полезна при микрохирургических кардио- и нейро- операциях с минимальной погрешностью. Благодаря им врачи отрабатывают хирургические операции в виртуальной среде перед проведением их непосредственно на пациентах.

Подведомственных учреждений, поименнованных в документе, — девять: «Центральный научно-исследовательский институт организации и информатизации здравоохранения», «Национальный медицинский исследовательский центр имени В. Алмазова», «Национальный медицинский исследовательский центр онкологии имени Н. Блохина», «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. Кулакова», «Национальный медицинский исследовательский центр терапии и профилактической медицины», «Санкт-Петербургский государственный педиатрический медицинский университет», «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний», «Федеральный центр информационных технологий экстремальных проблем» ФМБА и «Центр стратегического планирования и управления медико-биологическими рисками здоровью» ФМБА.

Ещё один нюанс: и ООО, и субподрядчики должны использовать радиоэлектронную продукцию российского происхождения и отечественные программы для электронных вычислительных машин. К этому нюансу мы ещё вернёмся. О ЕГИСЗ Госинформсистема включает в себя 13 групп подсистем, начиная от федеральной электронной регистратуры, федеральной интегрированной электронной медкарты до подсистемы мониторинга и контроля в сфере закупок медпрепаратов для обеспечения государственных и муниципальных нужд и подсистемы ведения специализированных регистров пациентов по отдельным категориям, мониторинга организации оказания высокотехнологичной медпомощи и санаторно-курортного лечения. Так же как и система мониторинга записи граждан на прием к врачу, телемедицинские консультации и многое-многое другое.

Цифровая медицина в России: как новые технологии применяются на практике

Появляется все больше устройств и сервисов, способных помочь врачу в ежедневной практике Например, введение в практику медицинского центра электронных карт, заметно упростит работу доктору и будет гарантировать, что данные о пациенте не затеряются и не будут уничтожены, если в течение нескольких лет человек не появлялся в больнице. Для больниц и клиник это означает, что все управленческие и экономические решения должны быть основаны на научных данных, а также и обеспечивать непрерывную медицинскую помощь, контроль качества и постоянное совершенствование. Большое внимание нацелено на телемедицину — взаимодействию врача и пациента на расстоянии с помощью специальных сервисов, сайтов и мобильных приложений. Так, пациент сможет получать квалифицированную помощь онлайн в любое время, при это находясь дома. Такой подход сделает медицинские услуги более доступными. Искусственный интеллект в рамках цифрового здравоохранения Технологии искусственного интеллекта также будут востребованы цифровым здравоохранением. Когда необходимо собрать, систематизировать и проанализировать большой объем данных, нейросеть станет незаменимым помощником. Кроме того, сегодня активно разрабатываются алгоритмы для помощи врачам при решении самых разнообразных задач: Оценки вероятности осложнений заболеваний; Удаленная первая медицинская помощь и сбор данных пациента; Помощь в постановке диагнозов и назначение лечения; Анализ данных тяжелобольных пациентов в режиме реального времени. Процесс сбора данных о пациенте ИИ Российские клиники на пути к цифровой медицине Национальный медико-хирургический центр им.

Помимо лидерства в импортозамещении, по итогам 2023 г.

Хирурги все чаще используют дополненную реальность AR для доступа к цифровой информации во время процедур, что устраняет необходимость в отдельных экранах. В лечении ран AR облегчает неинвазивную оценку тяжести раны, хода заживления и наиболее подходящих вариантов лечения. В регионах, где не хватает медицинского оборудования, оно позволяет производить инструменты и устройства, включая хирургические инструменты, ортопедические или стоматологические импланты и протезы. Также ведутся исследования по изучению возможности создания 3D-печатных органов для трансплантации с использованием собственных биологических тканей пациента. В случае успеха это позволит решить проблему постоянной нехватки органов для трансплантации и значительно снизить сопутствующие расходы. В заключение следует отметить, что цифровое здравоохранение стремительно развивается, и эти семь тенденций способны оказать глубокое влияние на отрасль здравоохранения. Заглядывая в 2024 год, мы видим, что слияние технологий и здравоохранения сулит захватывающие события, которые могут улучшить уход за пациентами, расширить доступ к медицинским данным и революционизировать процесс старения. Эти инновации — от искусственного интеллекта и цифровых двойников до телемедицины и 3D-печати — позволяют заглянуть в светлое и более эффективное будущее здравоохранения. Recommended articles preview:.

Но есть и полезные примеры их применения в медицине и смежных областях. Беспилотники Роботов-беспилотников начали применять для поиска пропавших людей. Беспилотник не устает и способен преодолевать большие расстояния. А установленные на нем системы видеоаналитики помогают отыскивать людей с проблемами памяти или, к примеру, заблудившихся в лесу детей. Дезинфекторы Уже сегодня роботам вполне по силам заменить медицинский персонал там, где требуется выполнение рутинных и однотипных действий, например, проверка температуры или дезинфекция помещений. Замена людей роботами еще и снижает риск распространения инфекций. В этом году по понятным причинам спрос на рободезинфекторов вырос, в том числе в России. Лаборатория робототехники Сбербанка представила дезинфектора, разработанного на базе робота-курьера. Другого робота-дезинфектора тестируют в офисах «Газпром нефти» — в перспективе на его платформе также планируют создать офисного робота-курьера. Робот-хирург Полноценный робот-врач — все еще фантастика, но робот-ассистированная хирургия — уже реальность. Самая знаменитая разработка в этой области — четырехрукий робот-хирург Da Vinci, который используется в сотнях клиник по всему миру, в том числе в России. Две его руки в режиме реального времени воспроизводят совершаемые хирургом движения, третья держит видеокамеру, которая передает хирургу изображение оперируемого участка, а четвёртая выполняет функции ассистента. Трехмерную печать уже достаточно широко используют при создании моделей и прототипов, объектов со сложной геометрией. В автомобилестроении и аэрокосмической отрасли она позволяет сократить число деталей, тем самым повысив надежность самолетов и ракет. Пытаются применять 3D-печать и в строительстве. Но, пожалуй, самые удивительные возможности применения этой технологии открываются именно в медицине. Печать средств защиты Весной по всему миру владельцы 3D-принтеров стали объединяться в движение «Мейкеры против COVID», которое помогало врачам печатать дефицитные на тот момент средства индивидуальной защиты. Помимо лицевых щитков и креплений для масок они начали печатать респираторы и даже переходники для подключения дыхательных фильтров. В России участники проекта передали врачам более 170 тысяч различных изделий. К движению мейкеров присоединялись не только энтузиасты-одиночки, но и целые подразделения компаний — в их числе сотрудники центра аддитивных технологий «Газпром нефти», которые помогали медикам Санкт-Петербурга и Ленинградской области.

Вы точно человек?

Согласно выводам ученых, следствием цифровой трансформации стал постепенный переход медицины к модели 4-П: предсказание заболевания, профилактика. Цифровая медицина. ИИ в деле: обнаружение рака толстой кишки от Intelligent Scopes и количественная оценка состояния мозга от Philips and SyntheticMR. В ближайшие годы искусственный интеллект должен превратиться в базовую медицинскую технологию, заявил мэр Москвы Сергей Собянин. «Телеком & Медицина» — деловая площадка, где представители профессионального сообщества обмениваются опытом внедрения передовых решений в области цифровой. Так появляются онкологические центры с современными цифровыми сканерами и многопрофильные мегабольницы, оснащенные медицинскими роботами.

Искусственный интеллект модифицировал медицину

В гостях у президента ЮФУ Марины Боровской проректор по цифровому развитию Ростовского Государственного Медицинского Университета Лев Гурцкой. Цифровые медицинские решения показывают свою эффективность при постановке диагнозов и лечении заболеваний, а также в профилактике и формировании ЗОЖ. Цифровая трансформация медицинской отрасли. Ключевые задачи и вызовы цифровизации медицины. Новые медицинские технологии и тренды развития системы здравоохранения на. По мнению главы отдела цифровой медицины компании «Инвитро» Бориса Зингермана, технологии будущего в медицине, базирующиеся на искусственном интеллекте. Новости. Материалы.

Рынок цифровой медицины существенно вырастет к 2023 г.: экспертное мнение

Советник по цифровой медицине Института системного программирования Российской академии наук Андрей Бурсов обозначил проблемы, которые связаны с машинным обучением. В прошлом году на развитие цифровой медицины также существенное влияние оказало распространение COVID-19. К участию в конкурсе Цифровая медицина 2022 приглашаются. высокотехнологичные стартапы и компании по направлениям. По мнению главы отдела цифровой медицины компании «Инвитро» Бориса Зингермана, технологии будущего в медицине, базирующиеся на искусственном интеллекте.

Тренды Цифрового Здравоохранения 2023

Кроме того, в некоторых случаях клиника на дому является более экономичным вариантом по сравнению с госпитализацией, поскольку не требует эквивалентных ресурсов с точки зрения персонала и помещений. Использование цифровых биомаркеров при принятии решений, касающихся здоровья Цифровые инструменты, такие как носимые устройства, мобильные приложения и другие цифровые платформы, собирают и анализируют поддающиеся количественной оценке физиологические, поведенческие или биологические показатели — так называемые цифровые биомаркеры. Чаще всего для этого не требуется проведение инвазивных процедур, что повышает комфорт пациента. Одним из ключевых преимуществ использования цифровых биомаркеров является возможность непрерывного мониторинга состояния здоровья человека в режиме реального времени. Это позволяет медицинским работникам выявлять ранние признаки заболеваний или других состояний здоровья и своевременно принимать меры для предотвращения осложнений. Кроме того, цифровые биомаркеры полезны для мониторинга эффективности лечения благодаря отслеживанию изменений в состоянии пациента после приема лекарств или медицинских процедур. Пример: Диакомпаньон — мобильное приложение для безопасного ведения беременности при сахарном диабете. Оно прогнозирует уровень сахара в зависимости от питания женщины, повышая ее шансы на благополучные роды. Распространение мобильных приложений для здоровья Технология мобильного здравоохранения mHealth предполагает использование мобильных приложений, текстовых сообщений и других форм цифровой связи для предоставления медицинских услуг. Существуют приложения для здоровья и фитнеса, которые отслеживают физическую активность пациентов, следят за их питанием и составляют персональные рекомендации по здоровью. Это делает mHealth более удобным и доступным, чем традиционные медицинские услуги.

Также пациенты получают возможность играть активную роль в контроле своего здоровья, что повышает качество лечения и способствует поддержанию физического благополучия.

В целом, хотя текущий прогресс в области цифровых биомаркеров уже достаточно значителен, мы еще только в самом начале пути. Полноценное использование этих технологий в медицинской практике все еще требует кропотливой работы по их валидации, адаптации и интеграции в клиническую практику. Они также отслеживают мобильность и активность включая шаги с помощью датчиков движения, таких как акселерометры и гироскопы. Такие носимые устройства могут выявлять случаи падения или оценивать нарушения походки у пациентов с болезнью Паркинсона; например, в проводимом исследовании с участием 200 пожилых людей оценивается эффективность часов Apple в выявлении падений клиническое исследование NCT04304495 2. Носимые химические сенсоры предоставляют информацию о динамически о динамически изменяющемся химическом составе биологических жидкостей таких как пот, слезы, слюна и другие для мониторинга параметров здоровья на молекулярном уровне. К ним относятся непрерывный мониторинг динамически изменяющегося уровня глюкозы у пациентов с диабетом, ионов калия и гормона стресса кортизола у людей с сердечными заболеваниями или препарата для лечения болезни Паркинсона l-DOPA также известного как леводопа 3 Недавно разработанные Гибридные носимые устройства представляют собой комбинацию различных типов сенсоров, позволяющих одновременно отслеживать как химические биомаркеры, так и физические показатели жизнедеятельности.

Эти датчики могут крепиться на смарт-часы, эластичные браслеты, кольца, пластыри, микроиглы, носки, обувь, стельки и очки, встраиваться в одежду или размещаться непосредственно на коже в различных местах тела. Мультимодальные сенсоры, встроенные в эти устройства, открывают новые возможности для комплексного и непрерывного мониторинга состояния здоровья, а также предупреждения о возникновении различных аномалий физиологии. Примерами таких многопараметрических носимых платформ являются Oura Ring и VitalPatch. Они объединяют несколько датчиков внутри кольца для одновременного отслеживания температуры кожи, частоты дыхания, насыщения крови кислородом, частоты сердечных сокращений и физической активности. Эти новейшие носимые сенсорные платформы предлагают возможности для раннего выявления ухудшения состояния или осложнений заболеваний. Они обеспечивают более удобный мониторинг и собирают ценную информацию о состоянии здоровья пациентов на протяжении длительного времени. Такие гибридные и многопараметрические носимые устройства способствуют более эффективному и персонализированному уходу за пациентами.

В триаду исследовательских приоритетов, одновременно значимых и для рынка, наряду с биосенсорами и телемедициной, входит электронный документооборот. Применяемые для перевода медицинских записей в цифровой вид решения повышают удобство оказания врачебных услуг и скорость передачи медицинской информации, сокращают рутинный труд врачей, позволяя им сконцентрироваться на лечении больных. Более того, алгоритмы искусственного интеллекта способны анализировать данные электронных медицинских карт и формировать своевременные рекомендации: оповестить о необходимости пройти обследование или обновить рецепт на лекарства. Развитие этого направления требует создания единых формализованных подходов к сбору, хранению и передаче данных, а также обеспечения более высокого уровня информационной безопасности. В них также применяются технологии искусственного интеллекта, благодаря которым можно повысить точность диагностики и назначения лечения. Также эти системы позволяют моментально проверить переносимость пациентом предписываемых ему лекарственных средств, их совместимость с медикаментами, которые человек уже принимает. Для обучения таких алгоритмов потребуется формирование датасетов, содержащих достаточное количество изображений высокого качества.

Сейчас среди них наиболее популярны те, что помогают вести здоровый образ жизни отслеживают физическую активность, потребление калорий, стимулируют приверженность здоровым привычкам и т. В среднесрочной перспективе в лидеры могут выйти решения, особенно востребованные у людей с хроническими заболеваниями, обеспечивающие им, в том числе с помощью широкого ряда биосенсоров, функцию постоянного мониторинга различных характеристик организма уровня глюкозы в крови, кровяного давления и др. Также развиваются пациентоориентированные сервисы, позволяющие быстро найти нужного врача и записаться к нему на прием, интеллектуальные чат-боты для сбора анамнеза, поиска медицинских рекомендаций. Используя подобные приложения, человек все активнее вовлекается в процесс поддержания своего здоровья, у него повышается уровень комплаентности приверженности лечению. Данные в ней передаются в формализованном виде в облачные хранилища, к которым может быть организован многопользовательский удаленный доступ. Совмещение функций постоянного мониторинга физиологических функций человека и своевременного отслеживания критических изменений снижает число исследований, проводимых с участием медперсонала, затраты на лечение, а также возможность врачебной ошибки.

То есть, это способ облегчения работы врачей в электронном документообороте. Конечно, без цифровизации сейчас нет нигде прорыва», - отметил член Комитета Совета Федерации по социальной политике Юрий Архаров.

Подробнее о мероприятии — в нашем репортаже. Ранее по теме:.

Цифровая платформа «Московская медицина. Мероприятия»

Важно еще и то, что информационная система цифрового профиля пациента позволяет повысить контроль за объемами оказываемой медицинской помощи, добавляет эксперт по ОМС Михаил Пушков. Наличие записи о медпомощи, которую он не получал, означает, что государством такая помощь была оплачена, а по факту - не предоставлена. Мы рекомендуем незамедлительно сообщать о приписках в территориальный фонд ОМС или страховую медицинскую организацию, которая выдала вам полис ОМС, - советует Пушков. Также обеспечивается контроль за выполнением надлежащих мероприятий медицинскими работниками. Все это позволит снизить риски обострений, рецидива заболеваний, повысить качество медпомощи и в конечном счете увеличить продолжительность жизни граждан, заключает Баланин. Из-за этого растут угрозы рецидива, метастазирования опухолей. Информационное сопровождение таких пациентов дает возможность обеспечить эффективную профилактику рецидивов рака.

О необходимости вовремя посетить врача и объеме положенной медпомощи при диспансерном наблюдении информируют страховые медицинские организации, выдавшие пациентам полисы ОМС. В числе других направлений цифровой трансформации системы ОМС - электронный персонифицированный учет медицинской помощи, переход к единым цифровым справочникам и классификаторам в сфере здравоохранения, а также ряд других мер. Они не касаются пациентов напрямую, но результатом их внедрения должно стать повышение качества и доступности медпомощи. А страховые медицинские организации и фонды ОМС должны своевременно на это реагировать, чтобы устранять нарушения прав граждан на охрану здоровья и качественную медицинскую помощь максимально быстро. Цифровая трансформация должна отвечать главой задаче — достижение целей пациенто-ориентированного здравоохранения. Юрий Жулёв, сопредседатель Всероссийского союза пациентов: - Цифровые сервисы в системе ОМС несут в себе новые возможности для пациентов, повышают прозрачность системы в целом.

Однако мы должны помнить, что остается значительное число пациентов, которые хотят взаимодействовать с медицинскими организациями традиционным образом по телефону или лично. Также при внедрении цифровых технологий необходимо учитывать права пациентов с ограничениями по здоровью, разрабатывая доступный интерфейс с учётом особенностей таких людей.

Экспертная оценка технологических трендов и регуляторных изменений в сфере обработки медицинских данных поможет нам понять, к чему необходимо готовиться уже сегодня для соответствия ожиданиям пациентов. Вячеслав Бурий, медицинский директор «ГК МедСтандарт», руководитель Центра медицинских компетенций: — ИИ уже сегодня позволяет повысить точность и скорость диагностики заболеваний, улучшить систему мониторинга здоровья и образования медицинского персонала.

Системы на основе искусственного интеллекта уже активно применяются в клинической практике, мы используем ИИ для диагностики рака кожи в Кожной клинике МедСтандарт с 2020 года. Также мы видим активное использование ИИ для диагностики рентгенограмм, в частности маммографии и компьютерной томографии в РФ и мире. Для сравнения: врач анализирует снимки КТ 15 минут, ИИ — 1-2 минуты.

С помощью мобильного приложения сами пациенты могут самостоятельно следить за своим состоянием и вовремя принимать лекарства, а приложение для опекуна позволяет контролировать, принято ли лекарство вовремя, когда будет следующий прием, как чувствует себя пациент, какие записи он оставляет в аудио- и видеодневниках.

Если прием лекарства пропущен или оно принято не в той дозировке, то опекуну на мобильное приложение приходит уведомление. То есть появляются персонализированные "умные" девайсы, позволяющие составлять планы лечения и реабилитации, а также отслеживать прогресс. Возможно, это позволит свести на нет и риск врачебных ошибок. Перспективы обнадеживают - Национальный проект "Здравоохранение" определил цифровизацию системы как одну из ключевых задач, - подчеркивает руководитель Школы медицинского бизнеса Анна Соломахина.

Поставлена задача к концу 2024 года усовершенствовать систему не только для сбора и анализа данных, но и разработать для этого необходимые цифровые устройства, платформы и технологии. О возможностях, которые предоставит здравоохранению экспериментальный правовой режим, и его ограничениях "РГ" рассказал директор по развитию бизнеса компании "Техлаб" Артем Магницкий. Сама консультация может быть посвящена только продолжению лечения, его коррекции и дистанционному наблюдению за пациентом, если диагноз ему уже был поставлен ранее врачом на очном приеме. Проводить телемедицинскую консультацию сможет врач той же медицинской организации, куда ранее обращался пациент очно, но со стажем работы по специальности не менее 7 лет.

Консультация будет проводиться в формате видеосвязи, ее длительность - не менее 20 минут. Одновременно с этим в медицинских организациях усилится контроль за сбором и обработкой персональных данных пациентов. Гражданско-правовая ответственность за неправомерный доступ к таким данным будет возлагаться на организации, ответственные за их обработку. Качество телемедицинских консультаций будут оценивать с помощью анкетирования пациентов и выполнения плановых показателей.

Взаимодействие в формате "врач-врач" должно происходить между лечащим врачом и, например, консилиумом специалистов из профильного медучреждения - чаще всего это научные медицинские исследовательские центры НМИЦ , - продолжает эксперт. В большинстве случаев это также телемедицина в формате видеосвязи. На первый план выходит такой формат, как "врач-куратор", который призван охватить ситуации, когда пациент, требующий особого внимания, оказывается вне зоны ответственности своего лечащего врача - например, в силу территориальной удаленности или отсутствия профильных специалистов поблизости. Например, после протезирования сердечного клапана и выписки из стационара пациент должен периодически наблюдаться у врача-кардиолога.

А что делать, если он приехал на операцию из отдаленного села и не имеет возможности прийти к своему кардиологу? Но первый его визит к врачу по правилам должен состояться уже в течение суток после выписки. В таком случае нужна возможность провести телемедицинскую консультацию, когда на месте провести осмотр может врач-терапевт или даже фельдшер, а кардиохирург и кардиолог с помощью телемедицинской системы - дать все необходимые рекомендации по ведению пациента и наблюдению за ним. Режим "врач-куратор" может быть необходим, если речь идет о наблюдении беременных, относящихся к группе риска, а также после процедуры ЭКО.

Для определения фактического времени участия слушателей в ОМ используются надежные механизмы персонифицированного учета продолжительности просмотра всплывающие окна. Современная технологичная студия: более 5 локаций, видеостена, виртуальный фон, прямой эфир и запись. Возможность постоянного доступа через личный кабинет к Свидетельствам НМО по итогам участия в ОМ с индивидуальным кодом подтверждения.

Будущее медицины: что изменится в диагностике и лечении

Здоровье в цифровую эпоху: инновации и технологии для профилактической медицины». Цифровые медицинские решения показывают свою эффективность при постановке диагнозов и лечении заболеваний, а также в профилактике и формировании ЗОЖ. Цифровая трансформация медицины. Цифровизация медицины и здравоохранения – ключевые направления развития современного общества и одна из крупнейших статей.

Похожие новости:

Оцените статью
Добавить комментарий